Search results
Results from the WOW.Com Content Network
In statistics, nonlinear regression is a form of regression analysis in which observational data are modeled by a function which is a nonlinear combination of the model parameters and depends on one or more independent variables. The data are fitted by a method of successive approximations (iterations).
Non-linear least squares is the form of least squares analysis used to fit a set of m observations with a model that is non-linear in n unknown parameters (m ≥ n). It is used in some forms of nonlinear regression. The basis of the method is to approximate the model by a linear one and to refine the parameters by successive iterations.
The function F is some nonlinear function, such as a polynomial. F can be a neural network , a wavelet network , a sigmoid network and so on. To test for non-linearity in a time series, the BDS test (Brock-Dechert-Scheinkman test) developed for econometrics can be used.
The figure on the right shows a plot of this function: a line giving the predicted ^ versus x, with the original values of y shown as red dots. The data at the extremes of x indicates that the relationship between y and x may be non-linear (look at the red dots relative to the regression line at low and high values of x). We thus turn to MARS ...
Generalized regression neural network (GRNN) is a variation to radial basis neural networks. GRNN was suggested by D.F. Specht in 1991. [1] GRNN can be used for regression, prediction, and classification. GRNN can also be a good solution for online dynamical systems.
Top: Raw data and model. Bottom: Evolution of the normalised sum of the squares of the errors. The Gauss–Newton algorithm is used to solve non-linear least squares problems, which is equivalent to minimizing a sum of squared function values. It is an extension of Newton's method for finding a minimum of a non-linear function.
Example of a curve (red line) fit to a small data set (black points) with nonparametric regression using a Gaussian kernel smoother. The pink shaded area illustrates the kernel function applied to obtain an estimate of y for a given value of x.
The newer nonlinear modelling approaches include non-parametric methods, such as feedforward neural networks, kernel regression, multivariate splines, etc., which do not require a priori knowledge of the nonlinearities in the relations. Thus the nonlinear modelling can utilize production data or experimental results while taking into account ...