enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Maximum a posteriori estimation - Wikipedia

    en.wikipedia.org/wiki/Maximum_a_posteriori...

    It is closely related to the method of maximum likelihood (ML) estimation, but employs an augmented optimization objective which incorporates a prior density over the quantity one wants to estimate. MAP estimation is therefore a regularization of maximum likelihood estimation, so is not a well-defined statistic of the Bayesian posterior ...

  3. Viterbi algorithm - Wikipedia

    en.wikipedia.org/wiki/Viterbi_algorithm

    The general algorithm involves message passing and is substantially similar to the belief propagation algorithm (which is the generalization of the forward-backward algorithm). With an algorithm called iterative Viterbi decoding , one can find the subsequence of an observation that matches best (on average) to a given hidden Markov model.

  4. M/M/∞ queue - Wikipedia

    en.wikipedia.org/wiki/M/M/%E2%88%9E_queue

    An M/M/∞ queue is a stochastic process whose state space is the set {0,1,2,3,...} where the value corresponds to the number of customers currently being served. Since, the number of servers in parallel is infinite, there is no queue and the number of customers in the systems coincides with the number of customers being served at any moment.

  5. M-estimator - Wikipedia

    en.wikipedia.org/wiki/M-estimator

    For example, a maximum-likelihood estimate is the point where the derivative of the likelihood function with respect to the parameter is zero; thus, a maximum-likelihood estimator is a critical point of the score function. [8]

  6. Maximum likelihood estimation - Wikipedia

    en.wikipedia.org/wiki/Maximum_likelihood_estimation

    In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed probability distribution, given some observed data. This is achieved by maximizing a likelihood function so that, under the assumed statistical model , the observed data is most probable.

  7. Maximum likelihood sequence estimation - Wikipedia

    en.wikipedia.org/wiki/Maximum_likelihood...

    where p(r | x) denotes the conditional joint probability density function of the observed series {r(t)} given that the underlying series has the values {x(t)}. In contrast, the related method of maximum a posteriori estimation is formally the application of the maximum a posteriori (MAP) estimation approach.

  8. Rejection sampling - Wikipedia

    en.wikipedia.org/wiki/Rejection_sampling

    Sample uniformly along this line from 0 to the maximum of the probability density function. If the sampled value is greater than the value of the desired distribution at this vertical line, reject the x {\displaystyle x} ‑value and return to step 1; else the x {\displaystyle x} ‑value is a sample from the desired distribution.

  9. Secretary problem - Wikipedia

    en.wikipedia.org/wiki/Secretary_problem

    The question is about the optimal strategy (stopping rule) to maximize the probability of selecting the best applicant. If the decision can be deferred to the end, this can be solved by the simple maximum selection algorithm of tracking the running maximum (and who achieved it), and selecting the overall maximum at the end. The difficulty is ...