enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. File:Nuclear fission.svg - Wikipedia

    en.wikipedia.org/wiki/File:Nuclear_fission.svg

    English: Simple diagram of nuclear fission. In the first frame, a neutron is about to be captured by the nucleus of a U-235 atom. In the second frame, the neutron has been absorbed and briefly turned the nucleus into a highly excited U-236 atom.

  3. Uranium-235 - Wikipedia

    en.wikipedia.org/wiki/Uranium-235

    Uranium-235 (235 U or U-235) is an isotope of uranium making up about 0.72% of natural uranium. Unlike the predominant isotope uranium-238, it is fissile, i.e., it can sustain a nuclear chain reaction. It is the only fissile isotope that exists in nature as a primordial nuclide. Uranium-235 has a half-life of 703.8 million years.

  4. Fission products (by element) - Wikipedia

    en.wikipedia.org/wiki/Fission_products_(by_element)

    Fission product yields by mass for thermal neutron fission of U-235 and Pu-239 (the two typical of current nuclear power reactors) and U-233 (used in the thorium cycle). This page discusses each of the main elements in the mixture of fission products produced by nuclear fission of the common nuclear fuels uranium and plutonium.

  5. Nuclear fission - Wikipedia

    en.wikipedia.org/wiki/Nuclear_fission

    When a uranium nucleus fissions into two daughter nuclei fragments, about 0.1 percent of the mass of the uranium nucleus [15] appears as the fission energy of ~200 MeV. For uranium-235 (total mean fission energy 202.79 MeV [16]), typically ~169 MeV appears as the kinetic energy of the daughter nuclei, which fly apart at about 3% of the speed of ...

  6. Enriched uranium - Wikipedia

    en.wikipedia.org/wiki/Enriched_uranium

    Enriched uranium is a type of uranium in which the percent composition of uranium-235 (written 235 U) has been increased through the process of isotope separation.Naturally occurring uranium is composed of three major isotopes: uranium-238 (238 U with 99.2732–99.2752% natural abundance), uranium-235 (235 U, 0.7198–0.7210%), and uranium-234 (234 U, 0.0049–0.0059%).

  7. Nuclear fission product - Wikipedia

    en.wikipedia.org/wiki/Nuclear_fission_product

    Note that this image was drawn using data from the OECD report, and the second edition of "The radiochemical manual". [17] For fission of uranium-235, the predominant radioactive fission products include isotopes of iodine, caesium, strontium, xenon and barium. The threat becomes smaller with the passage of time.

  8. Discovery of nuclear fission - Wikipedia

    en.wikipedia.org/wiki/Discovery_of_nuclear_fission

    Walking to a meeting with Wheeler, Bohr had an insight that the fission at low energies was due to the uranium-235 isotope, while at high energies it was mainly due to the far more abundant uranium-238 isotope. [120] This was based on Meitner's 1937 measurements of the neutron capture cross-sections. [121]

  9. Isotopes of uranium - Wikipedia

    en.wikipedia.org/wiki/Isotopes_of_uranium

    Uranium-235 makes up about 0.72% of natural uranium. Unlike the predominant isotope uranium-238, it is fissile, i.e., it can sustain a fission chain reaction. It is the only fissile isotope that is a primordial nuclide or found in significant quantity in nature. Uranium-235 has a half-life of 703.8 million years.