Search results
Results from the WOW.Com Content Network
Markov chains and continuous-time Markov processes are useful in chemistry when physical systems closely approximate the Markov property. For example, imagine a large number n of molecules in solution in state A, each of which can undergo a chemical reaction to state B with a certain average rate. Perhaps the molecule is an enzyme, and the ...
A family of Markov chains is said to be rapidly mixing if the mixing time is a polynomial function of some size parameter of the Markov chain, and slowly mixing otherwise. This book is about finite Markov chains, their stationary distributions and mixing times, and methods for determining whether Markov chains are rapidly or slowly mixing. [1] [4]
The image to the right describes a discrete-time Markov chain modeling Pac-Man with state-space {1,2,3,4,5,6,7,8,9}. The player controls Pac-Man through a maze, eating pac-dots. The player controls Pac-Man through a maze, eating pac-dots.
In probability theory, the mixing time of a Markov chain is the time until the Markov chain is "close" to its steady state distribution.. More precisely, a fundamental result about Markov chains is that a finite state irreducible aperiodic chain has a unique stationary distribution π and, regardless of the initial state, the time-t distribution of the chain converges to π as t tends to infinity.
The possible values of X i form a countable set S called the state space of the chain. [1] Markov chains are often described by a sequence of directed graphs, where the edges of graph n are labeled by the probabilities of going from one state at time n to the other states at time n + 1, (+ = =).
The Hitting times and stopping times of three samples of Brownian motion. In the study of stochastic processes in mathematics, a hitting time (or first hit time) is the first time at which a given process "hits" a given subset of the state space. Exit times and return times are also examples of hitting times.
A game of snakes and ladders or any other game whose moves are determined entirely by dice is a Markov chain, indeed, an absorbing Markov chain. This is in contrast to card games such as blackjack, where the cards represent a 'memory' of the past moves. To see the difference, consider the probability for a certain event in the game.
Kolmogorov's criterion defines the condition for a Markov chain or continuous-time Markov chain to be time-reversible. Time reversal of numerous classes of stochastic processes has been studied, including Lévy processes, [3] stochastic networks (Kelly's lemma), [4] birth and death processes, [5] Markov chains, [6] and piecewise deterministic ...