enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mechanical equilibrium - Wikipedia

    en.wikipedia.org/wiki/Mechanical_equilibrium

    Consequently, the object is in a state of static mechanical equilibrium. In classical mechanics, a particle is in mechanical equilibrium if the net force on that particle is zero. [1]: 39 By extension, a physical system made up of many parts is in mechanical equilibrium if the net force on each of its individual parts is zero. [1]: 45–46 [2]

  3. Equilibrant force - Wikipedia

    en.wikipedia.org/wiki/Equilibrant_Force

    Equilibrant force. In mechanics, an equilibrant force is a force which brings a body into mechanical equilibrium. [1] According to Newton's second law, a body has zero acceleration when the vector sum of all the forces acting upon it is zero:

  4. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    A state of mechanical equilibrium is stable if, when the position of the body is changed slightly, the body remains near that equilibrium. Otherwise, the equilibrium is unstable. A common visual representation of forces acting in concert is the free body diagram , which schematically portrays a body of interest and the forces applied to it by ...

  5. Statics - Wikipedia

    en.wikipedia.org/wiki/Statics

    The static equilibrium of a particle is an important concept in statics. A particle is in equilibrium only if the resultant of all forces acting on the particle is equal to zero. In a rectangular coordinate system the equilibrium equations can be represented by three scalar equations, where the sums of forces in all three directions are equal ...

  6. Statically indeterminate - Wikipedia

    en.wikipedia.org/wiki/Statically_indeterminate

    The structure has no possible states of self-stress, i.e. internal forces in equilibrium with zero external loads are not possible. Statical indeterminacy, however, is the existence of a non-trivial (non-zero) solution to the homogeneous system of equilibrium equations. It indicates the possibility of self-stress (stress in the absence of an ...

  7. D'Alembert's principle - Wikipedia

    en.wikipedia.org/wiki/D'Alembert's_principle

    D'Alembert's principle generalizes the principle of virtual work from static to dynamical systems by introducing forces of inertia which, when added to the applied forces in a system, result in dynamic equilibrium. [1] [2] D'Alembert's principle can be applied in cases of kinematic constraints that depend on velocities.

  8. Classical mechanics - Wikipedia

    en.wikipedia.org/wiki/Classical_mechanics

    Classical mechanics was traditionally divided into three main branches. Statics is the branch of classical mechanics that is concerned with the analysis of force and torque acting on a physical system that does not experience an acceleration, but rather is in equilibrium with its environment. [3]

  9. Mechanics - Wikipedia

    en.wikipedia.org/wiki/Mechanics

    Mechanics (from Ancient Greek μηχανική (mēkhanikḗ) 'of machines') [1] [2] is the area of physics concerned with the relationships between force, matter, and motion among physical objects. [3]