Search results
Results from the WOW.Com Content Network
The first study of the human brain at 3.0 T was published in 1994, [13] and in 1998 at 8 T. [14] Studies of the human brain have been performed at 9.4 T (2006) [15] and up to 10.5 T (2019). [16] Paul Lauterbur and Sir Peter Mansfield were awarded the 2003 Nobel Prize in Physiology or Medicine for their discoveries concerning MRI.
The CPT code revisions in 2013 were part of a periodic five-year review of codes. Some psychotherapy codes changed numbers, for example 90806 changed to 90834 for individual psychotherapy of a similar duration. Add-on codes were created for the complexity of communication about procedures.
Pneumoencephalography makes use of plain X-ray images. These are very poor at resolving soft tissues, such as the brain. Moreover, all the structures captured in the image are superimposed on top of each other, which makes it difficult to pick out individual items of interest (unlike modern scanners, which are able to produce fine virtual slices of the body, including of soft tissues).
Magnetic resonance elastography of the brain. A T1 weighted anatomical image is shown in the top-left, and the corresponding T2 weighted image from the MRE data is shown in the bottom-left. The wave image used to make the elastogram is shown in the top-right, and the resulting elastogram is in the bottom-right.
Diffusion imaging is an MRI method that produces in vivo magnetic resonance images of biological tissues sensitized with the local characteristics of molecular diffusion, generally water (but other moieties can also be investigated using MR spectroscopic approaches). [15]
Susceptibility weighted imaging (SWI), originally called BOLD venographic imaging, is an MRI sequence that is exquisitely sensitive to venous blood, hemorrhage and iron storage. SWI uses a fully flow compensated, long echo, gradient recalled echo (GRE) pulse sequence to acquire images.
CT scans may be used to diagnose headaches when neuroimaging is indicated and MRI is not available, or in emergency settings when hemorrhage, stroke, or traumatic brain injury is suspected. [9] MRI (magnetic resonance imaging) provides more sensitivity in the evaluation of the cavernous sinus and the orbital apex. [8]
The key to Phase-contrast MRI (PC-MRI) is the use of a bipolar gradient. [4] A bipolar gradient has equal positive and negative magnitudes that are applied for the same time duration. The bipolar gradient in PC-MRI is put in a sequence after RF excitation but before data collection during the echo time of the generic MRI modality.