enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stress–strain curve - Wikipedia

    en.wikipedia.org/wiki/Stressstrain_curve

    The stress and strain can be normal, shear, or a mixture, and can also can be uniaxial, biaxial, or multiaxial, and can even change with time. The form of deformation can be compression, stretching, torsion, rotation, and so on. If not mentioned otherwise, stress–strain curve typically refers to the relationship between axial normal stress ...

  3. Stress relaxation - Wikipedia

    en.wikipedia.org/wiki/Stress_relaxation

    The amount of relaxation which takes place is a function of time, temperature and stress level, thus the actual effect it has on the system is not precisely known, but can be bounded. Stress relaxation describes how polymers relieve stress under constant strain. Because they are viscoelastic, polymers behave in a nonlinear, non-Hookean fashion. [1]

  4. Plasticity (physics) - Wikipedia

    en.wikipedia.org/wiki/Plasticity_(physics)

    During the easy glide stage 1, the work hardening rate, defined by the change in shear stress with respect to shear strain (dτ/dγ) is low, representative of a small amount of applied shear stress necessary to induce a large amount of shear strain. Facile dislocation glide and corresponding flow is attributed to dislocation migration along ...

  5. Necking (engineering) - Wikipedia

    en.wikipedia.org/wiki/Necking_(engineering)

    However, while the phenomenon is caused by the same basic effect in both materials, they tend to have different types of (true) stress-strain curve, such that they should be considered separately in terms of necking behaviour. For metals, the (true) stress tends to rise monotonically with increasing strain, although the gradient (work hardening ...

  6. Work hardening - Wikipedia

    en.wikipedia.org/wiki/Work_hardening

    The strain can be decomposed into a recoverable elastic strain (ε e) and an inelastic strain (ε p). The stress at initial yield is σ 0 . Work hardening , also known as strain hardening , is the process by which a material's load-bearing capacity (strength) increases during plastic (permanent) deformation.

  7. Viscoplasticity - Wikipedia

    en.wikipedia.org/wiki/Viscoplasticity

    To obtain the stress–strain behavior shown in blue in the figure, the material is initially loaded at a strain rate of 0.1/s. The strain rate is then instantaneously raised to 100/s and held constant at that value for some time.

  8. Deformation mechanism - Wikipedia

    en.wikipedia.org/wiki/Deformation_mechanism

    For crystalline polymers, the deformation mechanism is best described by a stress-strain curve for a crystalline polymer, such as nylon. The stress-strain behavior exhibits four characteristic regions. The first region is the linear-elastic regime, where the stress-strain behavior is elastic with no plastic deformation.

  9. Ogden hyperelastic model - Wikipedia

    en.wikipedia.org/wiki/Ogden_hyperelastic_model

    The Ogden material model is a hyperelastic material model used to describe the non-linear stress–strain behaviour of complex materials such as rubbers, polymers, and biological tissue. The model was developed by Raymond Ogden in 1972. [ 1 ]