Search results
Results from the WOW.Com Content Network
Stress–strain curve for brittle materials compared to ductile materials. Some common characteristics among the stress–strain curves can be distinguished with various groups of materials and, on this basis, to divide materials into two broad categories; namely, the ductile materials and the brittle materials. [1]: 51
The strain can be decomposed into a recoverable elastic strain (ε e) and an inelastic strain (ε p). The stress at initial yield is σ 0 . Work hardening , also known as strain hardening , is the process by which a material's load-bearing capacity (strength) increases during plastic (permanent) deformation.
Young's modulus is the slope of the linear part of the stress–strain curve for a material under tension or compression. Young's modulus (or Young modulus ) is a mechanical property of solid materials that measures the tensile or compressive stiffness when the force is applied lengthwise.
The stress distribution from the neutral axis is the same as the shape of the stress-strain curve of the material (this assumes a non-composite cross-section). After a cross-section reaches a sufficiently high condition of plastic bending, it acts as a Plastic hinge .
Figure 2 - Hysteresis Stress Strain Curve. As the needs for polymers for engineering purposes are increasing, the fatigue behavior of polymers is receiving more attentions. Polymer fatigue life is affected by multiple factors, including temperature, oxidation, crystallization and so on. [9]
A polyethylene sample that has necked under tension. The tangent construction shown above is rarely used in interpreting the stress-strain curves of metals. However, it is popular for analysis of the tensile drawing of polymers. [4] [5] (since it allows study of the regime of stable necking). It may be noted that, for polymers, the strain is ...
The strain can be decomposed into a recoverable elastic strain and an inelastic strain (). The stress at initial yield is σ 0 {\displaystyle \sigma _{0}} . For strain hardening materials (as shown in the figure) the yield stress increases with increasing plastic deformation to a value of σ y {\displaystyle \sigma _{y}} .
The strain hardening modulus is calculated over the entire strain hardening region in the true stress strain curve. The strain hardening region of the stress-strain curve is considered to be the homogeneously deforming part well above the natural draw ratio, which is determined by presence of the neck propagation, and below the maximum ...