Search results
Results from the WOW.Com Content Network
Biofilms can be found on rocks and pebbles at the bottoms of most streams or rivers and often form on the surfaces of stagnant pools of water. Biofilms are important components of food chains in rivers and streams and are grazed by the aquatic invertebrates upon which many fish feed. Biofilms are found on the surface of and inside plants.
A trend of increased variability in biofilm biomass was observed with more intense trampling but no significant differences were found across trampling frequencies and intensities. The microorganisms' small size, which prevents complete removal by trampling, and the biofilms' capacity for rapid recovery may contribute to their high resilience ...
Phototrophic biofilms can be found on terrestrial and aquatic surfaces and can withstand environmental fluctuations and extreme environments. In aquatic systems, biofilms are prevalent on surfaces of rocks and plants, and in terrestrial environments they can be located in the soil, on rocks, and on buildings. [1]
Biofilms can consist of a multitude of bacteria, fungi, and algae which are able to absorb, immobilize, and degrade many common pollutants found in wastewater. By harnessing a natural phenomenon, biofilm-mediated remediation is an environmentally friendly method for environmental cleanup. [3]
A photo of sewage fungus found in the River Crane (London, England) Sewage fungus [1] (also known as undesirable river biofilms, URBs) is a polymicrobial biofilm (a microbial mat) that proliferates in saprobic rivers [2] and has been frequently used as a bioindicator [3] [4] of organic river pollution for the past century. [5]
Cyanobacteria can be found in almost every terrestrial and aquatic habitat – oceans, fresh water, damp soil, temporarily moistened rocks in deserts, bare rock and soil, and even Antarctic rocks. They can occur as planktonic cells or form phototrophic biofilms. They are found inside stones and shells (in endolithic ecosystems). [90]
Surface roughness can also affect biofilm adhesion. Rough, high-energy surfaces are more conducive to biofilm formation and maturation, while smooth surfaces are less susceptible to biofilm adhesion. The roughness of a surface can affect the hydrophobicity or hydrophilicity of the contacting substance, which in turn affects its ability to adhere.
In nature, many organisms live in communities (e.g., biofilms) that may allow for increased supply of nutrients and protection from environmental stresses. [53] These relationships can be essential for growth of a particular organism or group of organisms ( syntrophy ).