Search results
Results from the WOW.Com Content Network
In fact, the Black–Scholes formula for the price of a vanilla call option (or put option) can be interpreted by decomposing a call option into an asset-or-nothing call option minus a cash-or-nothing call option, and similarly for a put—the binary options are easier to analyze, and correspond to the two terms in the Black–Scholes formula.
In mathematical finance, the Black–Scholes equation, ... where (,) is the price of the option as a function of stock price S and time t, r is the risk-free ...
The Black–Scholes formula (hereinafter, "BS Formula") provides an explicit equation for the value of a call option on a non-dividend paying stock. In case the stock pays one or more discrete dividend(s) no closed formula is known, but several approximations can be used, or else the Black–Scholes PDE will have to be solved numerically.
The Black-Scholes option-pricing model, first published in 1973 in a paper titled "The Pricing of Options and Corporate Liabilities," was delivered in complete form for publication to.
While moneyness is a function of both spot and strike, usually one of these is fixed, and the other varies. Given a specific option, the strike is fixed, and different spots yield the moneyness of that option at different market prices; this is useful in option pricing and understanding the Black–Scholes formula.
The Black model extends Black-Scholes from equity to options on futures, bond options, swaptions, (i.e. options on swaps), and interest rate cap and floors (effectively options on the interest rate). The final four are numerical methods, usually requiring sophisticated derivatives-software, or a numeric package such as MATLAB.
The Black formula is similar to the Black–Scholes formula for valuing stock options except that the spot price of the underlying is replaced by a discounted futures price F. Suppose there is constant risk-free interest rate r and the futures price F(t) of a particular underlying is log-normal with constant volatility σ.
By constructing a riskless portfolio of an option and stock (as in the Black–Scholes model) a simple formula can be used to find the option price at each node in the tree. This value can approximate the theoretical value produced by Black–Scholes, to the desired degree of precision.