enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eccentricity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Eccentricity_(mathematics)

    In mathematics, the eccentricity of a conic section is a non-negative real number that uniquely characterizes its shape. One can think of the eccentricity as a measure of how much a conic section deviates from being circular. In particular: The eccentricity of a circle is 0. The eccentricity of an ellipse which is not a circle is between 0 and 1.

  3. Orbital eccentricity - Wikipedia

    en.wikipedia.org/wiki/Orbital_eccentricity

    The mean eccentricity of an object is the average eccentricity as a result of perturbations over a given time period. Neptune currently has an instant (current epoch ) eccentricity of 0.011 3 , [ 11 ] but from 1800 to 2050 has a mean eccentricity of 0.008 59 .

  4. Conic constant - Wikipedia

    en.wikipedia.org/wiki/Conic_constant

    The constant is given by =, where e is the eccentricity of the conic section. The equation for a conic section with apex at the origin and tangent to the y axis is y 2 − 2 R x + ( K + 1 ) x 2 = 0 {\\displaystyle y^{2}-2Rx+(K+1)x^{2}=0} alternately x = y 2 R + R 2 − ( K + 1 ) y 2 {\\displaystyle x={\\dfrac {y^{2}}{R+{\\sqrt {R^{2}-(K+1)y^{2 ...

  5. Eccentricity vector - Wikipedia

    en.wikipedia.org/wiki/Eccentricity_vector

    For Kepler orbits the eccentricity vector is a constant of motion. Its main use is in the analysis of almost circular orbits, as perturbing (non-Keplerian) forces on an actual orbit will cause the osculating eccentricity vector to change continuously as opposed to the eccentricity and argument of periapsis parameters for which eccentricity zero ...

  6. Bertrand's theorem - Wikipedia

    en.wikipedia.org/wiki/Bertrand's_theorem

    where e (the eccentricity), and θ 0 (the phase offset) are constants of integration. This is the general formula for a conic section that has one focus at the origin; e = 0 corresponds to a circle, 0 < e < 1 corresponds to an ellipse, e = 1 corresponds to a parabola, and e > 1 corresponds to a hyperbola.

  7. Angular eccentricity - Wikipedia

    en.wikipedia.org/wiki/Angular_eccentricity

    Angular eccentricity is one of many parameters which arise in the study of the ellipse or ellipsoid. It is denoted here by α (alpha). It is denoted here by α (alpha). It may be defined in terms of the eccentricity , e , or the aspect ratio, b/a (the ratio of the semi-minor axis and the semi-major axis ):

  8. Eccentric anomaly - Wikipedia

    en.wikipedia.org/wiki/Eccentric_anomaly

    The eccentricity e is defined as: = . From Pythagoras's theorem applied to the triangle with r (a distance FP) as hypotenuse: = ⁡ + (⁡) = (⁡) + (⁡ + ⁡) = ⁡ + ⁡ = (⁡) Thus, the radius (distance from the focus to point P) is related to the eccentric anomaly by the formula

  9. Orbital mechanics - Wikipedia

    en.wikipedia.org/wiki/Orbital_mechanics

    All bounded orbits where the gravity of a central body dominates are elliptical in nature. A special case of this is the circular orbit, which is an ellipse of zero eccentricity. The formula for the velocity of a body in a circular orbit at distance r from the center of gravity of mass M can be derived as follows: