Search results
Results from the WOW.Com Content Network
A chiral phenomenon is one that is not identical to its mirror image (see the article on mathematical chirality).The spin of a particle may be used to define a handedness, or helicity, for that particle, which, in the case of a massless particle, is the same as chirality.
A general definition of chirality based on group theory exists. [2] It does not refer to any orientation concept: an isometry is direct if and only if it is a product of squares of isometries, and if not, it is an indirect isometry. The resulting chirality definition works in spacetime. [3] [4]
In particular for a massless particle the helicity is the same as the chirality while for an antiparticle they have opposite sign. The handedness in both chirality and helicity relate to the rotation of a particle while it proceeds in linear motion with reference to the human hands. The thumb of the hand points towards the direction of linear ...
By contrast, for massive particles, distinct chirality states (e.g., as occur in the weak interaction charges) have both positive and negative helicity components, in ratios proportional to the mass of the particle. A treatment of the helicity of gravitational waves can be found in Weinberg. [5]
This article describes the mathematics of the Standard Model of particle physics, a gauge quantum field theory containing the internal symmetries of the unitary product group SU(3) × SU(2) × U(1). The theory is commonly viewed as describing the fundamental set of particles – the leptons, quarks, gauge bosons and the Higgs boson.
Helicity is the projection (dot product) of a spin pseudovector onto the direction of momentum (a true vector). Pseudoscalar particles, i.e. particles with spin 0 and odd parity, that is, a particle with no intrinsic spin with wave function that changes sign under parity inversion. Examples are pseudoscalar mesons.
For a graph G, let χ(G) denote the chromatic number and Δ(G) the maximum degree of G.The list coloring number ch(G) satisfies the following properties.. ch(G) ≥ χ(G).A k-list-colorable graph must in particular have a list coloring when every vertex is assigned the same list of k colors, which corresponds to a usual k-coloring.
Handedness (or chirality) is a property of the helix, not of the perspective: a right-handed helix cannot be turned to look like a left-handed one unless it is viewed in a mirror, and vice versa. Two types of helix shown in comparison. This shows the two chiralities of helices. One is left-handed and the other is right-handed.