Search results
Results from the WOW.Com Content Network
Gene dosage is the number of copies of a particular gene present in a genome. [1] Gene dosage is related to the amount of gene product (proteins or functional RNAs) the cell is able to express. Since a gene acts as a template, the number of templates in the cell contributes to the amount of gene product able to be produced.
Muller introduced a mutant gene that caused loss of pigmentation in fly eyes, and subsequently noted that males with only one copy of the mutant gene had similar pigmentation to females with two copies of the mutant gene. This led Muller to coin the phrase "dosage compensation" to describe the observed phenomenon of gene expression equalization ...
The AMY1 gene is an excellent example of how gene dosage affects the survival of an organism in a given environment. The multiple copies of the AMY1 gene give those who rely more heavily on high starch diets an evolutionary advantage, therefore the high gene copy number persists in the population. [26]
Genetic imbalance is to describe situation when the genome of a cell or organism has more copies of some genes than other genes due to chromosomal rearrangements or aneuploidy. Changes in gene dosage , the number of times a given gene is present in the cell nucleus , can create a genetic imbalance.
Theoretically, X-inactivation should eliminate the differences in gene dosage between affected individuals and individuals with a typical chromosome complement. In affected individuals, however, X-inactivation is incomplete and the dosage of these non-silenced genes will differ as they escape X-inactivation, similar to an autosomal aneuploidy.
The SHOX gene in the PAR1 region is the gene most commonly associated with and well understood with regards to disorders in humans, [17] but all pseudoautosomal genes escape X-inactivation and are therefore candidates for having gene dosage effects in sex chromosome aneuploidy conditions (45,X, 47,XXX, 47,XXY, 47,XYY, etc.).
AOL latest headlines, entertainment, sports, articles for business, health and world news.
If a and b are the signals from two amplicons in the patient sample, and A and B are the corresponding amplicons in the experimental control, then the dosage quotient DQ = (a/b) / (A/B). Although dosage quotients may be calculated for any pair of amplicons, it is usually the case that one of the pair is an internal reference probe.