enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Molar absorption coefficient - Wikipedia

    en.wikipedia.org/wiki/Molar_absorption_coefficient

    The absorbance of a material that has only one absorbing species also depends on the pathlength and the concentration of the species, according to the Beer–Lambert law =, where ε is the molar absorption coefficient of that material; c is the molar concentration of those species; ℓ is the path length.

  3. Calibration curve - Wikipedia

    en.wikipedia.org/wiki/Calibration_curve

    A calibration curve plot showing limit of detection (LOD), limit of quantification (LOQ), dynamic range, and limit of linearity (LOL).. In analytical chemistry, a calibration curve, also known as a standard curve, is a general method for determining the concentration of a substance in an unknown sample by comparing the unknown to a set of standard samples of known concentration. [1]

  4. Absorbance - Wikipedia

    en.wikipedia.org/wiki/Absorbance

    Absorbance is defined as "the logarithm of the ratio of incident to transmitted radiant power through a sample (excluding the effects on cell walls)". [1] Alternatively, for samples which scatter light, absorbance may be defined as "the negative logarithm of one minus absorptance, as measured on a uniform sample". [2]

  5. Isosbestic point - Wikipedia

    en.wikipedia.org/wiki/Isosbestic_point

    The spectra of basic, acid and intermediate pH solutions are shown. The analytical concentration of the dye is the same in all solutions. In spectroscopy, an isosbestic point is a specific wavelength, wavenumber or frequency at which the total absorbance of a sample does not change during a chemical reaction or a physical change of the sample ...

  6. Bradford protein assay - Wikipedia

    en.wikipedia.org/wiki/Bradford_protein_assay

    The equation displayed on the chart gives a means for calculating the absorbance and therefore concentration of the unknown samples. In Graph 1, x is concentration and y is absorbance, so one must rearrange the equation to solve for x and enter the absorbance of the measured unknown. [25]

  7. pH - Wikipedia

    en.wikipedia.org/wiki/PH

    The pH of a solution is defined as the negative logarithm of the concentration of H+, and the pOH is defined as the negative logarithm of the concentration of OH-. For example, the pH of a 0.01M solution of hydrochloric acid (HCl) is equal to 2 (pH = −log 10 (0.01)), while the pOH of a 0.01M solution of sodium hydroxide (NaOH) is equal to 2 ...

  8. Beer–Lambert law - Wikipedia

    en.wikipedia.org/wiki/Beer–Lambert_law

    Absorbance within range of 0.2 to 0.5 is ideal to maintain linearity in the Beer–Lambert law. If the radiation is especially intense, nonlinear optical processes can also cause variances. The main reason, however, is that the concentration dependence is in general non-linear and Beer's law is valid only under certain conditions as shown by ...

  9. Bjerrum plot - Wikipedia

    en.wikipedia.org/wiki/Bjerrum_plot

    K 1, K 2 and DIC each have units of a concentration, e.g. mol/L. A Bjerrum plot is obtained by using these three equations to plot these three species against pH = −log 10 [H +] eq, for given K 1, K 2 and DIC. The fractions in these equations give the three species' relative proportions, and so if DIC is unknown, or the actual concentrations ...