Search results
Results from the WOW.Com Content Network
Organic reactions can be organized into several basic types. Some reactions fit into more than one category. For example, some substitution reactions follow an addition-elimination pathway. This overview isn't intended to include every single organic reaction. Rather, it is intended to cover the basic reactions.
An example of a common reaction is a substitution reaction written as: Nu − + C−X → C−Nu + X −. where X is some functional group and Nu is a nucleophile. The number of possible organic reactions is infinite. However, certain general patterns are observed that can be used to describe many common or useful reactions. Each reaction has a ...
Biological processes are regulated by many means; examples include the control of gene expression, protein modification or interaction with a protein or substrate molecule. Homeostasis: regulation of the internal environment to maintain a constant state; for example, sweating to reduce temperature
The chemistry of the cell also depends upon the reactions of small molecules and ions. These can be inorganic (for example, water and metal ions) or organic (for example, the amino acids, which are used to synthesize proteins). [7] The mechanisms used by cells to harness energy from their environment via chemical reactions are known as metabolism.
The following outline is provided as an overview of and topical guide to organic chemistry: . Organic chemistry is the scientific study of the structure, properties, composition, reactions, and preparation (by synthesis or by other means) of carbon-based compounds, hydrocarbons, and their derivatives.
Algar–Flynn–Oyamada reaction; Alkylimino-de-oxo-bisubstitution; Alkyne trimerisation; Alkyne zipper reaction; Allan–Robinson reaction; Allylic rearrangement; Amadori rearrangement; Amine alkylation; Angeli–Rimini reaction; Andrussov oxidation; Appel reaction; Arbuzov reaction, Arbusow reaction; Arens–Van Dorp synthesis, Isler ...
Venenivibrio stagnispumantis gains energy by oxidizing hydrogen gas.. In biochemistry, chemosynthesis is the biological conversion of one or more carbon-containing molecules (usually carbon dioxide or methane) and nutrients into organic matter using the oxidation of inorganic compounds (e.g., hydrogen gas, hydrogen sulfide) or ferrous ions as a source of energy, rather than sunlight, as in ...
Physical organic chemistry is the study of the relationship between structure and reactivity of organic molecules.More specifically, physical organic chemistry applies the experimental tools of physical chemistry to the study of the structure of organic molecules and provides a theoretical framework that interprets how structure influences both mechanisms and rates of organic reactions.