Search results
Results from the WOW.Com Content Network
The absorbance of a material that has only one absorbing species also depends on the pathlength and the concentration of the species, according to the Beer–Lambert law =, where ε is the molar absorption coefficient of that material; c is the molar concentration of those species; ℓ is the path length.
Nevertheless, the absorbance unit or AU is commonly used in ultraviolet–visible spectroscopy and its high-performance liquid chromatography applications, often in derived units such as the milli-absorbance unit (mAU) or milli-absorbance unit-minutes (mAU×min), a unit of absorbance integrated over time.
Absorbance within range of 0.2 to 0.5 is ideal to maintain linearity in the Beer–Lambert law. If the radiation is especially intense, nonlinear optical processes can also cause variances. The main reason, however, is that the concentration dependence is in general non-linear and Beer's law is valid only under certain conditions as shown by ...
Absorption is a physical or chemical phenomenon or a process in which atoms, molecules or ions enter the liquid or solid bulk phase of a material. This is a different process from adsorption , since molecules undergoing absorption are taken up by the volume, not by the surface (as in the case for adsorption).
absorption coefficient is essentially (but not quite always) synonymous with attenuation coefficient; see attenuation coefficient for details; molar absorption coefficient or molar extinction coefficient , also called molar absorptivity , is the attenuation coefficient divided by molarity (and usually multiplied by ln(10), i.e., decadic); see ...
The concentration of pure osmium tetroxide (molar mass = 254.23 g/mol) is c(OsO 4) = 5.1 kg/L / 254.23 g/mol = 20.1 mol/L. A typical protein in bacteria, such as E. coli, may have about 60 copies, and the volume of a bacterium is about 10 −15 L. Thus, the number concentration C is C = 60 / (10 −15 L) = 6 × 10 16 L −1. The molar ...
The absorption coefficient is fundamentally the product of a quantity of absorbers per unit volume, [cm −3], times an efficiency of absorption (area/absorber, [cm 2]). Several sources [2] [12] [3] replace nσ λ with k λ r, where k λ is the absorption coefficient per unit density and r is the density of the gas.
A SAP's ability to absorb water depends on the ionic concentration of the aqueous solution. In deionized and distilled water, a SAP may absorb 300 times its weight [ 4 ] (from 30 to 60 times its own volume) and can become up to 99.9% liquid, and when put into a 0.9% saline solution the absorbency drops to approximately 50 times its weight.