Search results
Results from the WOW.Com Content Network
In chemistry, orbital hybridisation (or hybridization) is the concept of mixing atomic orbitals to form new hybrid orbitals (with different energies, shapes, etc., than the component atomic orbitals) suitable for the pairing of electrons to form chemical bonds in valence bond theory.
The hybrid can certainly be normalized, as it is the sum of two normalized wavefunctions. Orthogonality must be established so that the two hybrid orbitals can be involved in separate covalent bonds. The inner product of orthogonal orbitals must be zero and computing the inner product of the constructed hybrids gives the following calculation.
In chemistry, isovalent or second order hybridization is an extension of orbital hybridization, the mixing of atomic orbitals into hybrid orbitals which can form chemical bonds, to include fractional numbers of atomic orbitals of each type (s, p, d). It allows for a quantitative depiction of bond formation when the molecular geometry deviates ...
See illustration of a cross-section of these nested shells, at right. The s orbitals for all n numbers are the only orbitals with an anti-node (a region of high wave function density) at the center of the nucleus. All other orbitals (p, d, f, etc.) have angular momentum, and thus avoid the nucleus (having a wave node at the nucleus).
Hybridization (or hybridisation) may refer to: Hybridization (biology) , the process of combining different varieties of organisms to create a hybrid Orbital hybridization , in chemistry, the mixing of atomic orbitals into new hybrid orbitals
Hybridization is a model that describes how atomic orbitals combine to form new orbitals that better match the geometry of molecules. Atomic orbitals that are similar in energy combine to make hybrid orbitals. For example, the carbon in methane (CH 4) undergoes sp 3 hybridization to form four equivalent orbitals, resulting in a tetrahedral shape.
The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web.
In chemical bonds, an orbital overlap is the concentration of orbitals on adjacent atoms in the same regions of space. Orbital overlap can lead to bond formation. Linus Pauling explained the importance of orbital overlap in the molecular bond angles observed through experimentation; it is the basis for orbital hybridization.