Search results
Results from the WOW.Com Content Network
The median filter is a non-linear digital filtering technique, often used to remove noise from an image, [1] signal, [2] and video. [3] Such noise reduction is a typical pre-processing step to improve the results of later processing (for example, edge detection on an image).
The regularization parameter plays a critical role in the denoising process. When =, there is no smoothing and the result is the same as minimizing the sum of squares.As , however, the total variation term plays an increasingly strong role, which forces the result to have smaller total variation, at the expense of being less like the input (noisy) signal.
Noise reduction is the process of removing noise from a signal. Noise reduction techniques exist for audio and images. Noise reduction algorithms may distort the signal to some degree. Noise rejection is the ability of a circuit to isolate an undesired signal component from the desired signal component, as with common-mode rejection ratio.
This output can be converted to a signal by passing it through a digital-to-analog converter. There are problems with noise introduced by the conversions, but these can be controlled and limited for many useful filters. Due to the sampling involved, the input signal must be of limited frequency content or aliasing will occur.
The goal of the wiener filter is to compute a statistical estimate of an unknown signal using a related signal as an input and filtering it to produce the estimate. For example, the known signal might consist of an unknown signal of interest that has been corrupted by additive noise. The Wiener filter can be used to filter out the noise from ...
Noise reduction, the recovery of the original signal from the noise-corrupted one, is a very common goal in the design of signal processing systems, especially filters. The mathematical limits for noise removal are set by information theory .
Here, / is the inverse of the original system, = / is the signal-to-noise ratio, and | | is the ratio of the pure filtered signal to noise spectral density. When there is zero noise (i.e. infinite signal-to-noise), the term inside the square brackets equals 1, which means that the Wiener filter is simply the inverse of the system, as we might ...
Reduce high-frequency signal components with a digital lowpass filter. Decimate the filtered signal by M; that is, keep only every M th sample. Step 2 alone creates undesirable aliasing (i.e. high-frequency signal components will copy into the lower frequency band and be mistaken for lower frequencies). Step 1, when necessary, suppresses ...