Search results
Results from the WOW.Com Content Network
Fluid friction describes the friction between layers of a viscous fluid that are moving relative to each other. [7] [8] Lubricated friction is a case of fluid friction where a lubricant fluid separates two solid surfaces. [9] [10] [11] Skin friction is a component of drag, the force resisting the motion of a fluid across the surface of a body.
The shear resistance of soil is a result of friction and interlocking of particles, and possibly cementation or bonding of particle contacts. Due to interlocking, particulate material may expand or contract in volume as it is subject to shear strains. If soil expands its volume, the density of particles will decrease and the strength will ...
β = angle that the top surface of soil makes with the horizontal. φ = angle of internal friction of soil. The expression for passive pressure is: = ...
The angle of internal friction is thus closely related to the maximum stable slope angle, often called the angle of repose. But in addition to friction, soil derives significant shear resistance from interlocking of grains. If the grains are densely packed, the grains tend to spread apart from each other as they are subject to shear strain.
The angle of friction, [7] also sometimes called the angle of repose, [8] is the maximum angle at which a load can rest motionless on an inclined plane due to friction without sliding down. This angle is equal to the arctangent of the coefficient of static friction μ s between the surfaces. [8]
The Mohr–Coulomb theory is named in honour of Charles-Augustin de Coulomb and Christian Otto Mohr.Coulomb's contribution was a 1776 essay entitled "Essai sur une application des règles des maximis et minimis à quelques problèmes de statique relatifs à l'architecture" .
The double angle approach relies on the fact that the angle between the normal vectors to any two physical planes passing through (Figure 4) is half the angle between two lines joining their corresponding stress points (,) on the Mohr circle and the centre of the circle.
The relationship between dilation and internal friction is typically illustrated by the sawtooth model of dilatancy where the angle of dilation is analogous to the angle made by the teeth to the horizontal. Such a model can be used to infer that the observed friction angle is equal to the dilation angle plus the friction angle for zero dilation.