Search results
Results from the WOW.Com Content Network
In medicine, hydrostatic pressure in blood vessels is the pressure of the blood against the wall. It is the opposing force to oncotic pressure. In capillaries, hydrostatic pressure (also known as capillary blood pressure) is higher than the opposing “colloid osmotic pressure” in blood—a “constant” pressure primarily produced by ...
Hydrostatic pressure within blood vessels tends to cause water to filter out into the tissue. This leads to a difference in protein concentration between blood plasma and tissue. As a result, the colloidal or oncotic pressure of the higher level of protein in the plasma tends to draw water back into the blood vessels from the tissue. Starling's ...
The rate of mean blood flow depends on both blood pressure and the resistance to flow presented by the blood vessels. In the absence of hydrostatic effects (e.g. standing), mean blood pressure decreases as the circulating blood moves away from the heart through arteries and capillaries due to viscous losses of energy.
Interstitial fluid drains by afferent lymph vessels to one of the regional lymph node groups, where around 4 litres per day is reabsorbed to the blood stream. The remainder of the lymphatic fluid is rich in proteins and other large molecules and rejoins the blood stream via the thoracic duct which empties into the great veins close to the heart ...
Increase hydrostatic pressure in vessels: left ventricular heart failure, Decrease oncotic pressure in blood vessels: Cirrhosis (Cirrhosis leads to hypoalbuminemia and decreasing of colloid oncotic pressure in plasma that causes edema) Nephrotic syndrome (also due to hypoalbuminemia caused by proteinuria). Malnutrition (hypoalbuminism)
Substances called vasoconstrictors can reduce the size of blood vessels, thereby increasing blood pressure. Vasodilators (such as nitroglycerin) increase the size of blood vessels, thereby decreasing arterial pressure. If the blood viscosity increases (gets thicker), the result is an increase in arterial pressure.
The albumin does not move across membrane spaces easily because it is a large molecule. A rare cause of ascites, with elevated SAAG, and without change in hydrostatic/osmotic pressure is urinary bladder rupture with leakage of urine into the peritoneal space.
Turgor pressure within the stomata regulates when the stomata can open and close, which plays a role in transpiration rates of the plant. This is also important because this function regulates water loss within the plant. Lower turgor pressure can mean that the cell has a low water concentration and closing the stomata would help to preserve water.