Search results
Results from the WOW.Com Content Network
Whereas linear conjugate gradient seeks a solution to the linear equation =, the nonlinear conjugate gradient method is generally used to find the local minimum of a nonlinear function using its gradient alone. It works when the function is approximately quadratic near the minimum, which is the case when the function is twice differentiable at ...
A comparison of the convergence of gradient descent with optimal step size (in green) and conjugate vector (in red) for minimizing a quadratic function associated with a given linear system. Conjugate gradient, assuming exact arithmetic, converges in at most n steps, where n is the size of the matrix of the system (here n = 2).
Non-linear least squares is the form of least squares analysis used to fit a set of m observations with a model that is non-linear in n unknown parameters (m ≥ n). It is used in some forms of nonlinear regression. The basis of the method is to approximate the model by a linear one and to refine the parameters by successive iterations.
The fractional Schrödinger equation, a fundamental equation of fractional quantum mechanics, has the following form: [69] [70] (,) = (,) + (,) (,). where the solution of the equation is the wavefunction ψ ( r , t ) – the quantum mechanical probability amplitude for the particle to have a given position vector r at any given time t , and ħ ...
Powell's dog leg method, also called Powell's hybrid method, is an iterative optimisation algorithm for the solution of non-linear least squares problems, introduced in 1970 by Michael J. D. Powell. [1] Similarly to the Levenberg–Marquardt algorithm, it combines the Gauss–Newton algorithm with gradient descent, but it uses an explicit trust ...
In mathematics, quasilinearization is a technique which replaces a nonlinear differential equation or operator equation (or system of such equations) with a sequence of linear problems, which are presumed to be easier, and whose solutions approximate the solution of the original nonlinear problem with increasing accuracy.
Nonlinear algebra is the nonlinear analogue to linear algebra, generalizing notions of spaces and transformations coming from the linear setting. [1] Algebraic geometry is one of the main areas of mathematical research supporting nonlinear algebra, while major components coming from computational mathematics support the development of the area into maturity.
Linear dynamical systems can be solved exactly, in contrast to most nonlinear ones. Occasionally, a nonlinear system can be solved exactly by a change of variables to a linear system. Moreover, the solutions of (almost) any nonlinear system can be well-approximated by an equivalent linear system near its fixed points. Hence, understanding ...