Search results
Results from the WOW.Com Content Network
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate; Help; Learn to edit; Community portal; Recent changes; Upload file
In Disjunctive Syllogism, the first premise establishes two options. The second takes one away, so the conclusion states that the remaining one must be true. [3] It is shown below in logical form. Either A or B Not A Therefore B. When A and B are replaced with real life examples it looks like below.
Each premise and the conclusion can be of type A, E, I or O, and the syllogism can be any of the four figures. A syllogism can be described briefly by giving the letters for the premises and conclusion followed by the number for the figure. For example, the syllogism BARBARA below is AAA-1, or "A-A-A in the first figure".
A set of rules can be used to infer any valid conclusion if it is complete, while never inferring an invalid conclusion, if it is sound. A sound and complete set of rules need not include every rule in the following list, as many of the rules are redundant, and can be proven with the other rules.
The name "disjunctive syllogism" derives from its being a syllogism, a three-step argument, and the use of a logical disjunction (any "or" statement.) For example, "P or Q" is a disjunction, where P and Q are called the statement's disjuncts. The rule makes it possible to eliminate a disjunction from a logical proof. It is the rule that
A polysyllogism is a complex argument (also known as chain arguments of which there are four kinds: polysyllogisms, sorites, epicheirema, and dilemmas) [1] that strings together any number of propositions forming together a sequence of syllogisms such that the conclusion of each syllogism, together with the next proposition, is a premise for the next, and so on.
The rule states that a syllogism in which both premises are of form a or i (affirmative) cannot reach a conclusion of form e or o (negative). Exactly one of the premises must be negative to construct a valid syllogism with a negative conclusion. (A syllogism with two negative premises commits the related fallacy of exclusive premises.)