Search results
Results from the WOW.Com Content Network
The metabolic equivalent of task (MET) is the objective measure of the ratio of the rate at which a person expends energy, relative to the mass of that person, while performing some specific physical activity compared to a reference, currently set by convention at an absolute 3.5 mL of oxygen per kg per minute, which is the energy expended when sitting quietly by a reference individual, chosen ...
During loaded swimming, mice had a V̇O 2 max of around 140 mL/(kg·min). [22] Thoroughbred horses had a V̇O 2 max of around 193 mL/(kg·min) after 18 weeks of high-intensity training. [23] Alaskan huskies running in the Iditarod Trail Sled Dog Race had V̇O 2 max values as high as 240 mL/(kg·min). [24]
The test score is the time taken on the test, in minutes. This can also be converted to an estimated maximal oxygen uptake score using the calculator below and the following formulas, where the value "T" is the total time completed (expressed in minutes and fractions of a minute e.g. 9 minutes 15 seconds = 9.25 minutes). As with many exercise ...
VO 2 is measured in METs (mL/kg/min). One MET, which is equal to 3.5 mL/kg per minute, is considered to be the average resting energy expenditure of a typical human being. Intensity of exercise can be expressed as multiples of resting energy expenditure.
VO 2 max averages around 35–40 mL/(kg∙ min) in a healthy male and 27–31 mL/ (kg∙ min) in a healthy female. These scores can improve with training. These scores can improve with training. Factors that affect your VO 2 max are age, sex, fitness, training, and genetics.
K is the clearance [mL/min] or [m 3 /s] C is the concentration [mmol/L] or [mol/m 3 ] (in the United States often [mg/mL]) From the above definitions it follows that d C d t {\displaystyle {\frac {dC}{dt}}} is the first derivative of concentration with respect to time, i.e. the change in concentration with time.
Running economy (RE) a complex, multifactorial concept that represents the sum of metabolic, cardiorespiratory, biomechanical and neuromuscular efficiency during running. [1]: 33 [2] [3] Oxygen consumption (VO 2) is the most commonly used method for measuring running economy, as the exchange of gases in the body, specifically oxygen and carbon dioxide, closely reflects energy metabolism.
VO2 is often measured in absolute terms (ex. Liters/min), but in weight bearing activities, such as running, body mass can have a profound influence on energy expenditure. As a result, it is common to express energy expenditure as the rate of oxygen consumption in relation to body mass (ex. ml/kg/min). [8]