enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Laplace transform - Wikipedia

    en.wikipedia.org/wiki/Laplace_transform

    The Laplace transform can be alternatively defined as the bilateral Laplace transform, or two-sided Laplace transform, by extending the limits of integration to be the entire real axis. If that is done, the common unilateral transform simply becomes a special case of the bilateral transform, where the definition of the function being ...

  3. Classical control theory - Wikipedia

    en.wikipedia.org/wiki/Classical_control_theory

    The Laplace transform is a frequency-domain approach for continuous time signals irrespective of whether the system is stable or unstable. The Laplace transform of a function f ( t ) , defined for all real numbers t ≥ 0 , is the function F ( s ) , which is a unilateral transform defined by

  4. List of Laplace transforms - Wikipedia

    en.wikipedia.org/wiki/List_of_Laplace_transforms

    The unilateral Laplace transform takes as input a function whose time domain is the non-negative reals, which is why all of the time domain functions in the table below are multiples of the Heaviside step function, u(t). The entries of the table that involve a time delay τ are required to be causal (meaning that τ > 0).

  5. Two-sided Laplace transform - Wikipedia

    en.wikipedia.org/wiki/Two-sided_Laplace_transform

    Two-sided Laplace transforms are closely related to the Fourier transform, the Mellin transform, the Z-transform and the ordinary or one-sided Laplace transform. If f ( t ) is a real- or complex-valued function of the real variable t defined for all real numbers, then the two-sided Laplace transform is defined by the integral

  6. Impulse response - Wikipedia

    en.wikipedia.org/wiki/Impulse_response

    When the transfer function and the Laplace transform of the input are known, this convolution may be more complicated than the alternative of multiplying two functions in the frequency domain. The impulse response, considered as a Green's function, can be thought of as an "influence function": how a point of input influences output.

  7. Analog signal processing - Wikipedia

    en.wikipedia.org/wiki/Analog_signal_processing

    The Laplace transform is a generalized Fourier transform. It allows a transform of any system or signal because it is a transform into the complex plane instead of just the jω line like the Fourier transform. The major difference is that the Laplace transform has a region of convergence for which the transform is valid.

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Mellin inversion theorem - Wikipedia

    en.wikipedia.org/wiki/Mellin_inversion_theorem

    In mathematics, the Mellin inversion formula (named after Hjalmar Mellin) tells us conditions under which the inverse Mellin transform, or equivalently the inverse two-sided Laplace transform, are defined and recover the transformed function.