Search results
Results from the WOW.Com Content Network
Exponential smoothing or exponential moving average (EMA) is a rule of thumb technique for smoothing time series data using the exponential window function. Whereas in the simple moving average the past observations are weighted equally, exponential functions are used to assign exponentially decreasing weights over time. It is an easily learned ...
An exponential moving average (EMA), also known as an exponentially weighted moving average (EWMA), [5] is a first-order infinite impulse response filter that applies weighting factors which decrease exponentially. The weighting for each older datum decreases exponentially, never reaching zero. This formulation is according to Hunter (1986). [6]
The formula for a given N-Day period and for a given data series is: [2] [3] = = + (()) = (,) The idea is do a regular exponential moving average (EMA) calculation but on a de-lagged data instead of doing it on the regular data.
In statistical quality control, the EWMA chart (or exponentially weighted moving average chart) is a type of control chart used to monitor either variables or attributes-type data using the monitored business or industrial process's entire history of output. [1]
The Double Exponential Moving Average (DEMA) indicator was introduced in January 1994 by Patrick G. Mulloy, in an article in the "Technical Analysis of Stocks & Commodities" magazine: "Smoothing Data with Faster Moving Averages" [1] [2] It attempts to remove the inherent lag associated with Moving Averages by placing more weight on recent values.
The Triple Exponential Moving Average (TEMA) is a technical indicator in technical analysis that attempts to remove the inherent lag associated with moving averages by placing more weight on recent values. The name suggests this is achieved by applying a triple exponential smoothing which is not the case.
In probability theory and statistics, the exponential distribution or negative exponential distribution is the probability distribution of the distance between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate; the distance parameter could be any meaningful mono-dimensional measure of the process, such as time ...
If the decaying quantity, N(t), is the number of discrete elements in a certain set, it is possible to compute the average length of time that an element remains in the set. This is called the mean lifetime (or simply the lifetime ), where the exponential time constant , τ {\displaystyle \tau } , relates to the decay rate constant, λ, in the ...