Search results
Results from the WOW.Com Content Network
Piezoelectric balance presented by Pierre Curie to Lord Kelvin, Hunterian Museum, Glasgow. Piezoelectricity (/ ˌ p iː z oʊ-, ˌ p iː t s oʊ-, p aɪ ˌ iː z oʊ-/, US: / p i ˌ eɪ z oʊ-, p i ˌ eɪ t s oʊ-/) [1] is the electric charge that accumulates in certain solid materials—such as crystals, certain ceramics, and biological matter such as bone, DNA, and various proteins—in ...
A piezoelectric disk generates a voltage when deformed (change in shape is greatly exaggerated) A piezoelectric sensor is a device that uses the piezoelectric effect to measure changes in pressure, acceleration, temperature, strain, or force by converting them to an electrical charge. The prefix piezo-is Greek for 'press' or 'squeeze'. [1]
Piezo-phototronic effect is a three-way coupling effect of piezoelectric, semiconductor and photonic properties in non-central symmetric semiconductor materials, using the piezoelectric potential (piezopotential) that is generated by applying a strain to a semiconductor with piezoelectricity to control the carrier generation, transport, separation and/or recombination at metal–semiconductor ...
This asymmetric tuning of the Schottky barrier height is the piezotronic effect. Piezotronics effect is using the piezoelectric potential (piezopotential) created in materials with piezoelectricity as a “gate” voltage to tune/control the charge carrier transport properties for fabricating new devices.
The cross-section of a piezoelectric accelerometer. The word piezoelectric finds its roots in the Greek word piezein, which means to squeeze or press. When a physical force is exerted on the accelerometer, the seismic mass loads the piezoelectric element according to Newton's second law of motion (=). The force exerted on the piezoelectric ...
The converse piezoelectric effect (CPE) describes how an applied electric field will create a resultant strain which in turn leads to a physical deformation of the material. This effect can be described through the constitutive equations. [4] The CPE can be written as =
A crystal oscillator is an electronic oscillator circuit that uses a piezoelectric crystal as a frequency-selective element. [1] [2] [3] The oscillator frequency is often used to keep track of time, as in quartz wristwatches, to provide a stable clock signal for digital integrated circuits, and to stabilize frequencies for radio transmitters and receivers.
Insides of a slip-stick piezoelectric motor. Two piezoelectric crystals are visible that provide the mechanical torque. [1]A piezoelectric motor or piezo motor is a type of electric motor based on the change in shape of a piezoelectric material when an electric field is applied, as a consequence of the converse piezoelectric effect.