Search results
Results from the WOW.Com Content Network
Markov decision process (MDP), also called a stochastic dynamic program or stochastic control problem, is a model for sequential decision making when outcomes are ...
Markov decision processes represent a special class of stochastic dynamic programs in which the underlying stochastic process is a stationary ... Python implementation.
A partially observable Markov decision process (POMDP) is a generalization of a Markov decision process (MDP). A POMDP models an agent decision process in which it is assumed that the system dynamics are determined by an MDP, but the agent cannot directly observe the underlying state.
Discrete-time Markov decision processes (MDP) are planning problems with: durationless actions, nondeterministic actions with probabilities, full observability, maximization of a reward function, and a single agent. When full observability is replaced by partial observability, planning corresponds to a partially observable Markov decision ...
Figure 1. Probabilistic parameters of a hidden Markov model (example) X — states y — possible observations a — state transition probabilities b — output probabilities. In its discrete form, a hidden Markov process can be visualized as a generalization of the urn problem with replacement (where each item from the urn is returned to the original urn before the next step). [7]
Q-learning can identify an optimal action-selection policy for any given finite Markov decision process, given infinite exploration time and a partly random policy. [2] "Q" refers to the function that the algorithm computes: the expected reward—that is, the quality—of an action taken in a given state. [3]
In reinforcement learning (RL), a model-free algorithm is an algorithm which does not estimate the transition probability distribution (and the reward function) associated with the Markov decision process (MDP), [1] which, in RL, represents the problem to be solved. The transition probability distribution (or transition model) and the reward ...
The goal of stochastic programming is to find a decision which both optimizes some criteria chosen by the decision maker, and appropriately accounts for the uncertainty of the problem parameters. Because many real-world decisions involve uncertainty, stochastic programming has found applications in a broad range of areas ranging from finance to ...