enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hidden Markov model - Wikipedia

    en.wikipedia.org/wiki/Hidden_Markov_model

    Figure 1. Probabilistic parameters of a hidden Markov model (example) X — states y — possible observations a — state transition probabilities b — output probabilities. In its discrete form, a hidden Markov process can be visualized as a generalization of the urn problem with replacement (where each item from the urn is returned to the original urn before the next step). [7]

  3. Baum–Welch algorithm - Wikipedia

    en.wikipedia.org/wiki/Baum–Welch_algorithm

    The Baum–Welch algorithm was named after its inventors Leonard E. Baum and Lloyd R. Welch.The algorithm and the Hidden Markov models were first described in a series of articles by Baum and his peers at the IDA Center for Communications Research, Princeton in the late 1960s and early 1970s. [2]

  4. Forward–backward algorithm - Wikipedia

    en.wikipedia.org/wiki/Forward–backward_algorithm

    The forward–backward algorithm is an inference algorithm for hidden Markov models which computes the posterior marginals of all hidden state variables given a sequence of observations/emissions ::=, …,, i.e. it computes, for all hidden state variables {, …,}, the distribution ( | :).

  5. Forward algorithm - Wikipedia

    en.wikipedia.org/wiki/Forward_algorithm

    Smyth, Padhraic, David Heckerman, and Michael I. Jordan. "Probabilistic independence networks for hidden Markov probability models." Neural computation 9.2 (1997): 227-269. Read, Jonathon. "Hidden Markov Models and Dynamic Programming." University of Oslo (2011). Kohlschein, Christian, An introduction to Hidden Markov Models

  6. Hierarchical hidden Markov model - Wikipedia

    en.wikipedia.org/wiki/Hierarchical_hidden_Markov...

    The hierarchical hidden Markov model (HHMM) is a statistical model derived from the hidden Markov model (HMM). In an HHMM, each state is considered to be a self-contained probabilistic model. More precisely, each state of the HHMM is itself an HHMM. HHMMs and HMMs are useful in many fields, including pattern recognition. [1] [2]

  7. Viterbi algorithm - Wikipedia

    en.wikipedia.org/wiki/Viterbi_algorithm

    The Viterbi algorithm is a dynamic programming algorithm for obtaining the maximum a posteriori probability estimate of the most likely sequence of hidden states—called the Viterbi path—that results in a sequence of observed events. This is done especially in the context of Markov information sources and hidden Markov models (HMM).

  8. Shogun (toolbox) - Wikipedia

    en.wikipedia.org/wiki/Shogun_(toolbox)

    Shogun also offers a full implementation of Hidden Markov models. The core of Shogun is written in C++ and offers interfaces for MATLAB, Octave, Python, R, Java, Lua, Ruby and C#. Shogun has been under active development since 1999.

  9. Hidden Markov random field - Wikipedia

    en.wikipedia.org/wiki/Hidden_Markov_random_field

    In statistics, a hidden Markov random field is a generalization of a hidden Markov model. Instead of having an underlying Markov chain, hidden Markov random fields have an underlying Markov random field. Suppose that we observe a random variable , where .