Search results
Results from the WOW.Com Content Network
In Euclidean geometry, an equidiagonal quadrilateral is a convex quadrilateral whose two diagonals have equal length. Equidiagonal quadrilaterals were important in ancient Indian mathematics , where quadrilaterals were classified first according to whether they were equidiagonal and then into more specialized types.
Among all quadrilaterals, the shape that has the greatest ratio of its perimeter to its diameter (maximum distance between any two points) is an equidiagonal kite with angles 60°, 75°, 150°, 75°. Its four vertices lie at the three corners and one of the side midpoints of the Reuleaux triangle .
A quadric quadrilateral is a convex quadrilateral whose four vertices all lie on the perimeter of a square. [7] A diametric quadrilateral is a cyclic quadrilateral having one of its sides as a diameter of the circumcircle. [8] A Hjelmslev quadrilateral is a quadrilateral with two right angles at opposite vertices. [9]
A rhombus is an orthodiagonal quadrilateral with two pairs of parallel sides (that is, an orthodiagonal quadrilateral that is also a parallelogram). A square is a limiting case of both a kite and a rhombus. Orthodiagonal quadrilaterals that are also equidiagonal quadrilaterals are called midsquare quadrilaterals. [2]
This page was last edited on 3 November 2020, at 13:20 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
In mathematics and logic, a higher-order logic (abbreviated HOL) is a form of logic that is distinguished from first-order logic by additional quantifiers and, sometimes, stronger semantics.
Follow the quadrilateral vertices in the same sequential direction and construct each square on the left hand side of each side of the given quadrilateral. The segments joining the centers of the squares constructed externally (or internally) to the quadrilateral over two opposite sides have been referred to as Van Aubel segments.
In any quadrilateral, the four edge midpoints form a parallelogram, the Varignon parallelogram, whose sides are parallel to the diagonals and half their length.It follows that, in an equidiagonal and orthodiagonal quadrilateral, the sides of the Varignon parallelogram are equal-length and perpendicular; that is, it is a square.