Search results
Results from the WOW.Com Content Network
A and B can react to form C and D or, in the reverse reaction, C and D can react to form A and B. This is distinct from a reversible process in thermodynamics. Weak acids and bases undergo reversible reactions. For example, carbonic acid: H 2 CO 3 (l) + H 2 O (l) ⇌ HCO 3 − (aq) + H 3 O + (aq).
The reverse of an acid–base reaction is also an acid–base reaction, between the conjugate acid of the base in the first reaction and the conjugate base of the acid. In the above example, ethanoate is the base of the reverse reaction and hydronium ion is the acid.
In chemistry, an acid–base reaction is a chemical reaction that occurs between an acid and a base.It can be used to determine pH via titration.Several theoretical frameworks provide alternative conceptions of the reaction mechanisms and their application in solving related problems; these are called the acid–base theories, for example, Brønsted–Lowry acid–base theory.
A conjugate acid, within the Brønsted–Lowry acid–base theory, is a chemical compound formed when an acid gives a proton (H +) to a base—in other words, it is a base with a hydrogen ion added to it, as it loses a hydrogen ion in the reverse reaction.
The concept of chemical equilibrium was developed in 1803, after Berthollet found that some chemical reactions are reversible. [4] For any reaction mixture to exist at equilibrium, the rates of the forward and backward (reverse) reactions must be equal.
The equilibrium is determined by the acid and base dissociation constants (K a and K b) of the involved substances. A special case of the acid-base reaction is the neutralization where an acid and a base, taken at the exact same amounts, form a neutral salt. Acid-base reactions can have different definitions depending on the acid-base concept ...
The E and C parameters refer, respectively, to the electrostatic and covalent contributions to the strength of the bonds that the acid and base will form. The equation is -ΔH = E A E B + C A C B + W. The W term represents a constant energy contribution for acid–base reaction such as the cleavage of a dimeric acid or base. The equation ...
In organic chemistry, aldol reactions are acid- or base-catalyzed reactions of aldehydes or ketones. Aldol addition or aldolization refers to the addition of an enolate or enolation as a nucleophile to a carbonyl moiety as an electrophile. This produces a β-hydroxyaldehyde or β-hydroxyketone.