Search results
Results from the WOW.Com Content Network
Gaussian functions are widely used in statistics to describe the normal distributions, in signal processing to define Gaussian filters, in image processing where two-dimensional Gaussians are used for Gaussian blurs, and in mathematics to solve heat equations and diffusion equations and to define the Weierstrass transform.
In probability theory and statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is f ( x ) = 1 2 π σ 2 e − ( x − μ ) 2 2 σ 2 . {\displaystyle f(x)={\frac {1}{\sqrt {2\pi \sigma ^{2}}}}e^{-{\frac ...
If a data distribution is approximately normal then about 68 percent of the data values are within one standard deviation of the mean (mathematically, μ ± σ, where μ is the arithmetic mean), about 95 percent are within two standard deviations (μ ± 2σ), and about 99.7 percent lie within three standard deviations (μ ± 3σ).
In descriptive statistics, the range of a set of data is size of the narrowest interval which contains all the data. It is calculated as the difference between the largest and smallest values (also known as the sample maximum and minimum ). [ 1 ]
Gaussian measures with mean = are known as centered Gaussian measures. The Dirac measure δ μ {\displaystyle \delta _{\mu }} is the weak limit of γ μ , σ 2 n {\displaystyle \gamma _{\mu ,\sigma ^{2}}^{n}} as σ → 0 {\displaystyle \sigma \to 0} , and is considered to be a degenerate Gaussian measure ; in contrast, Gaussian measures with ...
In statistics, the 68–95–99.7 rule, also known as the empirical rule, and sometimes abbreviated 3sr, is a shorthand used to remember the percentage of values that lie within an interval estimate in a normal distribution: approximately 68%, 95%, and 99.7% of the values lie within one, two, and three standard deviations of the mean, respectively.
In probability and statistics, the 97.5th percentile point of the standard normal distribution is a number commonly used for statistical calculations. The approximate value of this number is 1.96, meaning that 95% of the area under a normal curve lies within approximately 1.96 standard deviations of the mean.
Cumulative from mean gives a probability that a statistic is between 0 (mean) and Z. Example: Prob(0 ≤ Z ≤ 0.69) = 0.2549. Cumulative gives a probability that a statistic is less than Z. This equates to the area of the distribution below Z. Example: Prob(Z ≤ 0.69) = 0.7549. Complementary cumulative