Ad
related to: quadrilateral hierarchy theorem formula sheet 1
Search results
Results from the WOW.Com Content Network
Bretschneider's formula generalizes Brahmagupta's formula for the area of a cyclic quadrilateral, which in turn generalizes Heron's formula for the area of a triangle.. The trigonometric adjustment in Bretschneider's formula for non-cyclicality of the quadrilateral can be rewritten non-trigonometrically in terms of the sides and the diagonals e and f to give [2] [3]
Euler's quadrilateral theorem or Euler's law on quadrilaterals, named after Leonhard Euler (1707–1783), describes a relation between the sides of a convex quadrilateral and its diagonals. It is a generalisation of the parallelogram law which in turn can be seen as generalisation of the Pythagorean theorem .
A quadric quadrilateral is a convex quadrilateral whose four vertices all lie on the perimeter of a square. [7] A diametric quadrilateral is a cyclic quadrilateral having one of its sides as a diameter of the circumcircle. [8] A Hjelmslev quadrilateral is a quadrilateral with two right angles at opposite vertices. [9]
Theorems about quadrilaterals and circles (6 P) Pages in category "Theorems about quadrilaterals" The following 11 pages are in this category, out of 11 total.
Euler's quadrilateral theorem ; Euler's rotation theorem ; Euler's theorem (differential geometry) Euler's theorem (number theory) Euler's theorem in geometry (triangle geometry) Euler's theorem on homogeneous functions (multivariate calculus) Exchange theorem (linear algebra) Excision theorem (homology theory)
In Euclidean geometry, Ptolemy's theorem is a relation between the four sides and two diagonals of a cyclic quadrilateral (a quadrilateral whose vertices lie on a common circle). The theorem is named after the Greek astronomer and mathematician Ptolemy (Claudius Ptolemaeus). [ 1 ]
In spherical geometry, a spherical quadrilateral formed from four intersecting greater circles is cyclic if and only if the summations of the opposite angles are equal, i.e., α + γ = β + δ for consecutive angles α, β, γ, δ of the quadrilateral. [30] One direction of this theorem was proved by Anders Johan Lexell in 1782. [31]
Heron's formula can be obtained from Brahmagupta's formula or Bretschneider's formula by setting one of the sides of the quadrilateral to zero. Brahmagupta's formula gives the area of a cyclic quadrilateral whose sides have lengths , , , as = () () where = (+ + +) is the semiperimeter. Heron's formula is ...
Ad
related to: quadrilateral hierarchy theorem formula sheet 1