enow.com Web Search

  1. Ads

    related to: hyperbolic geometry theorems and properties

Search results

  1. Results from the WOW.Com Content Network
  2. Hyperbolic geometry - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_geometry

    All theorems of absolute geometry, including the first 28 propositions of book one of Euclid's Elements, are valid in Euclidean and hyperbolic geometry. Propositions 27 and 28 of Book One of Euclid's Elements prove the existence of parallel/non-intersecting lines.

  3. Constructions in hyperbolic geometry - Wikipedia

    en.wikipedia.org/wiki/Constructions_in...

    Algebraically, hyperbolic and spherical geometry have the same structure. [4] This allows us to apply concepts and theorems to one geometry to the other. [4] Applying hyperbolic geometry to spherical geometry can make it easier to understand because spheres are much more concrete, which then makes spherical geometry easier to conceptualize.

  4. Hyperbolic functions - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_functions

    The hyperbolic sine and the hyperbolic cosine are entire functions. As a result, the other hyperbolic functions are meromorphic in the whole complex plane. By Lindemann–Weierstrass theorem , the hyperbolic functions have a transcendental value for every non-zero algebraic value of the argument.

  5. Hyperbolic law of cosines - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_law_of_cosines

    In hyperbolic geometry, the "law of cosines" is a pair of theorems relating the sides and angles of triangles on a hyperbolic plane, analogous to the planar law of cosines from plane trigonometry, or the spherical law of cosines in spherical trigonometry. [1] It can also be related to the relativistic velocity addition formula. [2] [3]

  6. Hyperbolic triangle - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_triangle

    In hyperbolic geometry, a hyperbolic triangle is a triangle in the hyperbolic plane. It consists of three line segments called sides or edges and three points called angles or vertices . Just as in the Euclidean case, three points of a hyperbolic space of an arbitrary dimension always lie on the same plane.

  7. Hyperbolization theorem - Wikipedia

    en.wikipedia.org/wiki/Hyperbolization_theorem

    The Mostow rigidity theorem implies that if a manifold of dimension at least 3 has a hyperbolic structure of finite volume, then it is essentially unique. The conditions that the manifold M should be irreducible and atoroidal are necessary, as hyperbolic manifolds have these properties. However the condition that the manifold be Haken is ...

  8. Hyperbolic 3-manifold - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_3-manifold

    Hyperbolic geometry is the most rich and least understood of the eight geometries in dimension 3 (for example, for all other geometries it is not hard to give an explicit enumeration of the finite-volume manifolds with this geometry, while this is far from being the case for hyperbolic manifolds). After the proof of the Geometrisation ...

  9. Category:Hyperbolic geometry - Wikipedia

    en.wikipedia.org/wiki/Category:Hyperbolic_geometry

    Hyperbolic 3-manifold; Hyperbolic coordinates; Hyperbolic Dehn surgery; Hyperbolic functions; Hyperbolic group; Hyperbolic law of cosines; Hyperbolic manifold; Hyperbolic metric space; Hyperbolic motion; Hyperbolic space; Hyperbolic tree; Hyperbolic volume; Hyperbolization theorem; Hyperboloid model; Hypercycle (geometry) HyperRogue

  1. Ads

    related to: hyperbolic geometry theorems and properties