Search results
Results from the WOW.Com Content Network
De Moivre's formula does not hold for non-integer powers. The derivation of de Moivre's formula above involves a complex number raised to the integer power n. If a complex number is raised to a non-integer power, the result is multiple-valued (see failure of power and logarithm identities).
Thébault's theorem ; Theorem of de Moivre–Laplace (probability theory) Theorem of the cube (algebraic varieties) Theorem of the gnomon ; Theorem of three moments ; Theorem on friends and strangers (Ramsey theory) Thévenin's theorem (electrical circuits) Thompson transitivity theorem (finite groups)
de Moivre's theorem may be: de Moivre's formula, a trigonometric identity; Theorem of de Moivre–Laplace, a central limit theorem This page was last edited on 28 ...
In mathematics, a root of unity, occasionally called a de Moivre number, is any complex number that yields 1 when raised to some positive integer power n. Roots of unity are used in many branches of mathematics, and are especially important in number theory , the theory of group characters , and the discrete Fourier transform .
Published in 1738 by Woodfall and running for 258 pages, the second edition of de Moivre's book introduced the concept of normal distributions as approximations to binomial distributions. In effect de Moivre proved a special case of the central limit theorem. Sometimes his result is called the theorem of de Moivre–Laplace.
de Moivre's illustration of his piecewise linear approximation. De Moivre's law first appeared in his 1725 Annuities upon Lives, the earliest known example of an actuarial textbook. [6] Despite the name now given to it, de Moivre himself did not consider his law (he called it a "hypothesis") to be a true description of the pattern of human ...
De Moivre's most notable achievement in probability was the discovery of the first instance of central limit theorem, by which he was able to approximate the binomial distribution with the normal distribution. [16]
According to the de Moivre–Laplace theorem, as n grows large, the shape of the discrete distribution converges to the continuous Gaussian curve of the normal distribution. In probability theory , the de Moivre–Laplace theorem , which is a special case of the central limit theorem , states that the normal distribution may be used as an ...