enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ordinary differential equation - Wikipedia

    en.wikipedia.org/wiki/Ordinary_differential_equation

    A solution that has no extension is called a maximal solution. A solution defined on all of R {\displaystyle \mathbb {R} } is called a global solution . A general solution of an n {\displaystyle n} th-order equation is a solution containing n {\displaystyle n} arbitrary independent constants of integration .

  3. List of named differential equations - Wikipedia

    en.wikipedia.org/wiki/List_of_named_differential...

    Bass diffusion model; Black–Scholes equation; Economic growth. Solow–Swan model ′ = [()] Ramsey–Cass–Koopmans model; Dynamic stochastic general equilibrium [8]; Feynman–Kac formula

  4. Finite difference method - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_method

    To use a finite difference method to approximate the solution to a problem, one must first discretize the problem's domain. This is usually done by dividing the domain into a uniform grid (see image). This means that finite-difference methods produce sets of discrete numerical approximations to the derivative, often in a "time-stepping" manner.

  5. Differential equation - Wikipedia

    en.wikipedia.org/wiki/Differential_equation

    In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. [1] In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, and the differential equation defines a relationship between the two.

  6. Finite difference - Wikipedia

    en.wikipedia.org/wiki/Finite_difference

    A finite difference is a mathematical expression of the form f (x + b) − f (x + a).If a finite difference is divided by b − a, one gets a difference quotient.The approximation of derivatives by finite differences plays a central role in finite difference methods for the numerical solution of differential equations, especially boundary value problems.

  7. Numerical methods for ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    For example, the second-order equation y′′ = −y can be rewritten as two first-order equations: y′ = z and z′ = −y. In this section, we describe numerical methods for IVPs, and remark that boundary value problems (BVPs) require a different set of tools. In a BVP, one defines values, or components of the solution y at more than one ...

  8. Separation of variables - Wikipedia

    en.wikipedia.org/wiki/Separation_of_variables

    If one can evaluate the two integrals, one can find a solution to the differential equation. Observe that this process effectively allows us to treat the derivative as a fraction which can be separated. This allows us to solve separable differential equations more conveniently, as demonstrated in the example below.

  9. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    The higher order derivatives can be applied in physics; for example, while the first derivative of the position of a moving object with respect to time is the object's velocity, how the position changes as time advances, the second derivative is the object's acceleration, how the velocity changes as time advances.