enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Difference quotient - Wikipedia

    en.wikipedia.org/wiki/Difference_quotient

    [5] [6] The difference quotient is a measure of the average rate of change of the function over an interval (in this case, an interval of length h). [7] [8]: 237 [9] The limit of the difference quotient (i.e., the derivative) is thus the instantaneous rate of change. [9]

  3. Numerical differentiation - Wikipedia

    en.wikipedia.org/wiki/Numerical_differentiation

    This formula is known as the symmetric difference quotient. In this case the first-order errors cancel, so the slope of these secant lines differ from the slope of the tangent line by an amount that is approximately proportional to h 2 {\displaystyle h^{2}} .

  4. Discrete calculus - Wikipedia

    en.wikipedia.org/wiki/Discrete_calculus

    Discrete differential calculus is the study of the definition, properties, and applications of the difference quotient of a function. The process of finding the difference quotient is called differentiation. Given a function defined at several points of the real line, the difference quotient at that point is a way of encoding the small-scale (i ...

  5. Ratio distribution - Wikipedia

    en.wikipedia.org/wiki/Ratio_distribution

    A ratio distribution (also known as a quotient distribution) is a probability distribution constructed as the distribution of the ratio of random variables having two other known distributions. Given two (usually independent ) random variables X and Y , the distribution of the random variable Z that is formed as the ratio Z = X / Y is a ratio ...

  6. Quotient rule - Wikipedia

    en.wikipedia.org/wiki/Quotient_rule

    In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. Let () = (), where both f and g are differentiable and ()

  7. Finite difference method - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_method

    For example, consider the ordinary differential equation ′ = + The Euler method for solving this equation uses the finite difference quotient (+) ′ to approximate the differential equation by first substituting it for u'(x) then applying a little algebra (multiplying both sides by h, and then adding u(x) to both sides) to get (+) + (() +).

  8. Symmetric derivative - Wikipedia

    en.wikipedia.org/wiki/Symmetric_derivative

    A well-known counterexample is the absolute value function f(x) = |x|, which is not differentiable at x = 0, but is symmetrically differentiable here with symmetric derivative 0. For differentiable functions, the symmetric difference quotient does provide a better numerical approximation of the derivative than the usual difference quotient. [3]

  9. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    In principle, the derivative of a function can be computed from the definition by considering the difference quotient and computing its limit. Once the derivatives of a few simple functions are known, the derivatives of other functions are more easily computed using rules for obtaining derivatives of more complicated functions from simpler ones.