Search results
Results from the WOW.Com Content Network
The work done is given by the dot product of the two vectors, where the result is a scalar. When the force F is constant and the angle θ between the force and the displacement s is also constant, then the work done is given by: = If the force is variable, then work is given by the line integral:
Thermodynamic work is one of the principal kinds of process by which a thermodynamic system can interact with and transfer energy to its surroundings. This results in externally measurable macroscopic forces on the system's surroundings, which can cause mechanical work, to lift a weight, for example, [1] or cause changes in electromagnetic, [2] [3] [4] or gravitational [5] variables.
The diagram enables calculation of the work performed and thus can provide a measure of the power produced by the engine. [ 4 ] To exactly calculate the work done by the system it is necessary to calculate the integral of the pressure with respect to volume.
An example of such an exchange would be an isentropic expansion or compression that entails work done on or by the flow. For an isentropic flow, entropy density can vary between different streamlines. If the entropy density is the same everywhere, then the flow is said to be homentropic.
If the system has such rigid walls that pressure–volume work cannot be done, but the walls are adiabatic (Q = 0), and energy is added as isochoric (constant volume) work in the form of friction or the stirring of a viscous fluid within the system (W < 0), and there is no phase change, then the temperature of the system will rise.
This article uses the physics sign convention for work, where positive work is work done by the system. Using this convention, by the first law of thermodynamics, The yellow area represents the work done = + where W is work, U is internal energy, and Q is heat. [1] Pressure-volume work by the closed system is defined as:
It is often valuable to calculate the work done in a process. The work done in a process is the area beneath the process path on a P-V diagram. Figure 2 If the process is isobaric, then the work done on the piston is easily calculated. For example, if the gas expands slowly against the piston, the work done by the gas to raise the piston is the ...
The net work equals the area inside because it is (a) the Riemann sum of work done on the substance due to expansion, minus (b) the work done to re-compress. Because the net variation in state properties during a thermodynamic cycle is zero, it forms a closed loop on a P-V diagram.