Search results
Results from the WOW.Com Content Network
Helicity is a pseudo-scalar quantity: it changes sign under change from a right-handed to a left-handed frame of reference; it can be considered as a measure of the handedness (or chirality) of the flow. Helicity is one of the four known integral invariants of the Euler equations; the other three are energy, momentum and angular momentum.
The automatic calculation of particle interaction or decay is part of the computational particle physics branch. It refers to computing tools that help calculating the complex particle interactions as studied in high-energy physics, astroparticle physics and cosmology.
The helicity of a particle is positive (" right-handed") if the direction of its spin is the same as the direction of its motion and negative ("left-handed") if opposite. Helicity is conserved. [1] That is, the helicity commutes with the Hamiltonian, and thus, in the absence of external forces, is time-invariant. It is also rotationally ...
In the Standard Model, using quantum field theory it is conventional to use the helicity basis to simplify calculations (of cross sections, for example).
In statistical mechanics, the Zimm–Bragg model is a helix-coil transition model that describes helix-coil transitions of macromolecules, usually polymer chains. Most models provide a reasonable approximation of the fractional helicity of a given polypeptide; the Zimm–Bragg model differs by incorporating the ease of propagation (self-replication) with respect to nucleation.
These amplitudes are called MHV amplitudes, because at tree level, they violate helicity conservation to the maximum extent possible. The tree amplitudes in which all gauge bosons have the same helicity or all but one have the same helicity vanish. MHV amplitudes may be calculated very efficiently by means of the Parke–Taylor formula.
This is a table of Clebsch–Gordan coefficients used for adding angular momentum values in quantum mechanics.The overall sign of the coefficients for each set of constant , , is arbitrary to some degree and has been fixed according to the Condon–Shortley and Wigner sign convention as discussed by Baird and Biedenharn. [1]
Magnetic helicity is a gauge-dependent quantity, because can be redefined by adding a gradient to it (gauge choosing).However, for perfectly conducting boundaries or periodic systems without a net magnetic flux, the magnetic helicity contained in the whole domain is gauge invariant, [15] that is, independent of the gauge choice.