Search results
Results from the WOW.Com Content Network
Helicity is a pseudo-scalar quantity: it changes sign under change from a right-handed to a left-handed frame of reference; it can be considered as a measure of the handedness (or chirality) of the flow. Helicity is one of the four known integral invariants of the Euler equations; the other three are energy, momentum and angular momentum.
The helicity of a particle is positive (" right-handed") if the direction of its spin is the same as the direction of its motion and negative ("left-handed") if opposite. Helicity is conserved. [1] That is, the helicity commutes with the Hamiltonian, and thus, in the absence of external forces, is time-invariant. It is also rotationally ...
The automatic calculation of particle interaction or decay is part of the computational particle physics branch. It refers to computing tools that help calculating the complex particle interactions as studied in high-energy physics, astroparticle physics and cosmology.
Helicity is the projection (dot product) of a spin pseudovector onto the direction of momentum (a true vector). Pseudoscalar particles, i.e. particles with spin 0 and odd parity, that is, a particle with no intrinsic spin with wave function that changes sign under parity inversion. Examples are pseudoscalar mesons.
The relation between the two quantities, in index notation, are given by ... Related to the concept of vorticity is the helicity () , defined as = ...
Since the helicity of massive particles is frame-dependent, it might seem that the same particle would interact with the weak force according to one frame of reference, but not another. The resolution to this paradox is that the chirality operator is equivalent to helicity for massless fields only, for which helicity is not frame-dependent. By ...
In statistical mechanics, the Zimm–Bragg model is a helix-coil transition model that describes helix-coil transitions of macromolecules, usually polymer chains. Most models provide a reasonable approximation of the fractional helicity of a given polypeptide; the Zimm–Bragg model differs by incorporating the ease of propagation (self-replication) with respect to nucleation.
In the Standard Model, using quantum field theory it is conventional to use the helicity basis to simplify calculations (of cross sections, for example).