Search results
Results from the WOW.Com Content Network
The page table is a key component of virtual address translation that is necessary to access data in memory. The page table is set up by the computer's operating system, and may be read and written during the virtual address translation process by the memory management unit or by low-level system software or firmware.
Virtual memory makes application programming easier by hiding fragmentation of physical memory; by delegating to the kernel the burden of managing the memory hierarchy (eliminating the need for the program to handle overlays explicitly); and, when each process is run in its own dedicated address space, by obviating the need to relocate program code or to access memory with relative addressing.
A translation lookaside buffer (TLB) is a memory cache that stores the recent translations of virtual memory to physical memory. It is used to reduce the time taken to access a user memory location. [1] It can be called an address-translation cache. It is a part of the chip's memory-management unit (MMU).
The number of address spaces available depends on the underlying address structure, which is usually limited by the computer architecture being used. Often an address space in a system with virtual memory corresponds to a highest level translation table, e.g., a segment table in IBM System/370.
4-level paging of the 64-bit mode. In the 4-level paging scheme (previously known as IA-32e paging), the 64-bit virtual memory address is divided into five parts. The lowest 12 bits contain the offset within the 4 KiB memory page, and the following 36 bits are evenly divided between the four 9 bit descriptors, each linking to a 64-bit page table entry in a 512-entry page table for each of the ...
In a computer using virtual memory, accessing the location corresponding to a memory address may involve many levels. In computing, a memory address is a reference to a specific memory location in memory used by both software and hardware. [1] These addresses are fixed-length sequences of digits, typically displayed and handled as unsigned ...
Diagram of relationship between the virtual and physical address spaces. Date: 5 April 2007: Source: en:Image:Virtual address space and physical address space relationship.png: Author: Traced by User:Stannered, original by en:User:Dysprosia: Permission (Reusing this file) BSD original: Other versions
Diagram of relationship between the virtual and physical address spaces. In computing, a physical address (also real address, or binary address), is a memory address that is represented in the form of a binary number on the address bus circuitry in order to enable the data bus to access a particular storage cell of main memory, or a register of memory-mapped I/O device.