Search results
Results from the WOW.Com Content Network
A polygene is a member of a group of non-epistatic genes that interact additively to influence a phenotypic trait, thus contributing to multiple-gene inheritance (polygenic inheritance, multigenic inheritance, quantitative inheritance [1]), a type of non-Mendelian inheritance, as opposed to single-gene inheritance, which is the core notion of Mendelian inheritance.
The infinitesimal model, also known as the polygenic model, is a widely used statistical model in quantitative genetics and in genome-wide association studies.Originally developed in 1918 by Ronald Fisher, it is based on the idea that variation in a quantitative trait is influenced by an infinitely large number of genes, each of which makes an infinitely small (infinitesimal) contribution to ...
Polygenic inheritance can be explained as Mendelian inheritance at many loci, [9] resulting in a trait which is normally-distributed. If n is the number of involved loci, then the coefficients of the binomial expansion of ( a + b ) 2n will give the frequency of distribution of all n allele combinations .
Traits controlled by two or more genes are said to be polygenic traits. Polygenic means "many genes" are necessary for the organism to develop the trait. For example, at least three genes are involved in making the reddish-brown pigment in the eyes of fruit flies. Polygenic traits often show a wide range of phenotypes.
This model illustrates polygenic additive effects on phenotype Genetic effects are broadly divided into two categories: additive and non-additive. Additive genetic effects occur where expression of more than one gene contributes to phenotype (or where alleles of a heterozygous gene both contribute), and the phenotypic expression of these gene(s ...
On a pedigree, polygenic diseases do tend to "run in families", but the inheritance does not fit simple patterns as with Mendelian diseases. This does not mean that the genes cannot eventually be located and studied. There is also a strong environmental component to many of them (e.g., blood pressure). Other such cases include: asthma
Genetic architecture is the underlying genetic basis of a phenotypic trait and its variational properties. [1] Phenotypic variation for quantitative traits is, at the most basic level, the result of the segregation of alleles at quantitative trait loci (QTL). [2]
Phenotypes may be predicted with at least better-than-chance accuracy using a Punnett square, but the phenotype that may appear in the presence of a given genotype can in some instances be influenced by many other factors, as when polygenic inheritance and/or epigenetics are at work.