Search results
Results from the WOW.Com Content Network
A version of the periodic table indicating the origins – including big bang nucleosynthesis – of the elements. All elements above 103 are also man-made and are not included. Big Bang nucleosynthesis produced very few nuclei of elements heavier than lithium due to a bottleneck: the absence of a stable nucleus with 8 or 5 nucleons. This ...
Nucleosynthesis is the process that creates new atomic nuclei from pre-existing nucleons (protons and neutrons) and nuclei. According to current theories, the first nuclei were formed a few minutes after the Big Bang, through nuclear reactions in a process called Big Bang nucleosynthesis. [1]
Nucleogenesis (also known as nucleosynthesis) as a general phenomenon is a process usually associated with production of nuclides in the Big Bang or in stars, by nuclear reactions there. Some of these neutron reactions (such as the r-process and s-process ) involve absorption by atomic nuclei of high-temperature (high energy) neutrons from the ...
The decay constant, λ "lambda", the reciprocal of the mean lifetime (in s −1), sometimes referred to as simply decay rate. The mean lifetime, τ "tau", the average lifetime (1/e life) of a radioactive particle before decay. Although these are constants, they are associated with the statistical behavior of populations of atoms. In consequence ...
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
Nucleosynthesis is the explanation of how more complex elements are created out of simple elements in the moments following the Big Bang. Right after the Big Bang, when the temperature was extremely high, if any nuclear particles, such as neutrons and protons, became bound together (being held together by the attractive nuclear force) they ...
In the fields of Big Bang theory and cosmology, reionization is the process that caused electrically neutral atoms in the universe to reionize after the lapse of the "dark ages". Detecting and studying the reionization process is challenging but multiple avenues have been pursued.
An example of cosmic ray spallation is a neutron hitting a nitrogen-14 nucleus in the Earth's atmosphere, yielding a proton, an alpha particle, and a beryllium-10 nucleus, which eventually decays to boron-10. Alternatively, a proton can hit oxygen-16, yielding two protons, a neutron, and again an alpha particle and a beryllium-10 nucleus.