Search results
Results from the WOW.Com Content Network
The matching pursuit is an example of a greedy algorithm applied on signal approximation. A greedy algorithm finds the optimal solution to Malfatti's problem of finding three disjoint circles within a given triangle that maximize the total area of the circles; it is conjectured that the same greedy algorithm is optimal for any number of circles.
An example of such an input for = is pictured on the right. Inapproximability results show that the greedy algorithm is essentially the best-possible polynomial time approximation algorithm for set cover up to lower order terms (see Inapproximability results below), under plausible
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
Another example is attempting to make 40 US cents without nickels (denomination 25, 10, 1) with similar result — the greedy chooses seven coins (25, 10, and 5 × 1), but the optimal is four (4 × 10). A coin system is called "canonical" if the greedy algorithm always solves its change-making problem optimally.
The right example generalises to 2-colorable graphs with n vertices, where the greedy algorithm expends n/2 colors. In the study of graph coloring problems in mathematics and computer science , a greedy coloring or sequential coloring [ 1 ] is a coloring of the vertices of a graph formed by a greedy algorithm that considers the vertices of the ...
Longest-processing-time-first (LPT) is a greedy algorithm for job scheduling.The input to the algorithm is a set of jobs, each of which has a specific processing-time.There is also a number m specifying the number of machines that can process the jobs.
The path graph with four vertices provides the simplest example of a graph whose chromatic number differs from its Grundy number. This graph can be colored with two colors, but its Grundy number is three: if the two endpoints of the path are colored first, the greedy coloring algorithm will use three colors for the whole graph.
List scheduling is a greedy algorithm for Identical-machines scheduling.The input to this algorithm is a list of jobs that should be executed on a set of m machines. The list is ordered in a fixed order, which can be determined e.g. by the priority of executing the jobs, or by their order of arrival.