Search results
Results from the WOW.Com Content Network
As a side effect of the process, some carbon nuclei fuse with additional helium to produce a stable isotope of oxygen and energy: 12 6 C + 4 2 He → 16 8 O + γ (+7.162 MeV) Nuclear fusion reactions of helium with hydrogen produces lithium-5, which also is highly unstable, and decays back into smaller nuclei with a half-life of 3.7 × 10 −22 s.
Helium is the smallest and the lightest noble gas and one of the most unreactive elements, so it was commonly considered that helium compounds cannot exist at all, or at least under normal conditions. [1] Helium's first ionization energy of 24.57 eV is the highest of any element. [2]
As a result, there is little mixing of fresh hydrogen into the core or fusion products outward. In higher-mass stars, the dominant energy production process is the CNO cycle, which is a catalytic cycle that uses nuclei of carbon, nitrogen and oxygen as intermediaries and in the end produces a helium nucleus as with the proton–proton chain. [22]
Supernova nucleosynthesis is the nucleosynthesis of chemical elements in supernova explosions.. In sufficiently massive stars, the nucleosynthesis by fusion of lighter elements into heavier ones occurs during sequential hydrostatic burning processes called helium burning, carbon burning, oxygen burning, and silicon burning, in which the byproducts of one nuclear fuel become, after ...
The proton–proton chain, also commonly referred to as the p–p chain, is one of two known sets of nuclear fusion reactions by which stars convert hydrogen to helium. It dominates in stars with masses less than or equal to that of the Sun , [ 2 ] whereas the CNO cycle , the other known reaction, is suggested by theoretical models to dominate ...
Once temperatures are lowered, out of every 16 nucleons (2 neutrons and 14 protons), 4 of these (25% of the total particles and total mass) combine quickly into one helium-4 nucleus. This produces one helium for every 12 hydrogens, resulting in a universe that is a little over 8% helium by number of atoms, and 25% helium by mass. "One analogy ...
The subsequent nucleosynthesis of heavier elements (Z ≥ 6, carbon and heavier elements) requires the extreme temperatures and pressures found within stars and supernovae. These processes began as hydrogen and helium from the Big Bang collapsed into the first stars after about 500 million years.
Illustration of a proton–proton chain, from hydrogen forming deuterium, helium-3, and regular helium-4. Nuclear transmutation is the conversion of one chemical element or an isotope into another chemical element. [1] Nuclear transmutation occurs in any process where the number of protons or neutrons in the nucleus of an atom is changed.