enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Transformation matrix - Wikipedia

    en.wikipedia.org/wiki/Transformation_matrix

    A reflection about a line or plane that does not go through the origin is not a linear transformation — it is an affine transformation — as a 4×4 affine transformation matrix, it can be expressed as follows (assuming the normal is a unit vector): [′ ′ ′] = [] [] where = for some point on the plane, or equivalently, + + + =.

  3. Shear mapping - Wikipedia

    en.wikipedia.org/wiki/Shear_mapping

    Thus every shear matrix has an inverse, and the inverse is simply a shear matrix with the shear element negated, representing a shear transformation in the opposite direction. In fact, this is part of an easily derived more general result: if S is a shear matrix with shear element λ, then S n is a shear matrix whose shear element is simply nλ.

  4. Helmert transformation - Wikipedia

    en.wikipedia.org/wiki/Helmert_transformation

    The transformation from a reference frame 1 to a reference frame 2 can be described with three translations Δx, Δy, Δz, three rotations Rx, Ry, Rz and a scale parameter μ. The Helmert transformation (named after Friedrich Robert Helmert, 1843–1917) is a geometric transformation method within a three-dimensional space.

  5. Active and passive transformation - Wikipedia

    en.wikipedia.org/wiki/Active_and_passive...

    Geometric transformations can be distinguished into two types: active or alibi transformations which change the physical position of a set of points relative to a fixed frame of reference or coordinate system (alibi meaning "being somewhere else at the same time"); and passive or alias transformations which leave points fixed but change the ...

  6. Diagonalizable matrix - Wikipedia

    en.wikipedia.org/wiki/Diagonalizable_matrix

    The geometric transformation represented by a diagonalizable matrix is an inhomogeneous dilation (or anisotropic scaling). That is, it can scale the space by a different amount in different directions. The direction of each eigenvector is scaled by a factor given by the corresponding eigenvalue.

  7. Homogeneous coordinates - Wikipedia

    en.wikipedia.org/wiki/Homogeneous_coordinates

    In homogeneous coordinates, the point (,,) is represented by (,,,) and the point it maps to on the plane is represented by (,,), so projection can be represented in matrix form as Matrices representing other geometric transformations can be combined with this and each other by matrix multiplication. As a result, any perspective projection of ...

  8. Identity matrix - Wikipedia

    en.wikipedia.org/wiki/Identity_matrix

    In linear algebra, the identity matrix of size is the square matrix with ones on the main diagonal and zeros elsewhere. It has unique properties, for example when the identity matrix represents a geometric transformation, the object remains unchanged by the transformation. In other contexts, it is analogous to multiplying by the number 1.

  9. Transformation (function) - Wikipedia

    en.wikipedia.org/wiki/Transformation_(function)

    In mathematics, a transformation, transform, or self-map [1] is a function f, usually with some geometrical underpinning, that maps a set X to itself, i.e. f: X → X. [ 2 ] [ 3 ] [ 4 ] Examples include linear transformations of vector spaces and geometric transformations , which include projective transformations , affine transformations , and ...