enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Regular dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Regular_dodecahedron

    When a regular dodecahedron is inscribed in a sphere, it occupies more of the sphere's volume (66.49%) than an icosahedron inscribed in the same sphere (60.55%). [10] The resulting of both spheres' volumes initially began from the problem by ancient Greeks, determining which of two shapes has a larger volume: an icosahedron inscribed in a ...

  3. Dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Dodecahedron

    A tetartoid (also tetragonal pentagonal dodecahedron, pentagon-tritetrahedron, and tetrahedric pentagon dodecahedron) is a dodecahedron with chiral tetrahedral symmetry (T). Like the regular dodecahedron, it has twelve identical pentagonal faces, with three meeting in each of the 20 vertices. However, the pentagons are not regular and the ...

  4. Pentakis dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Pentakis_dodecahedron

    Let be the golden ratio.The 12 points given by (,,) and cyclic permutations of these coordinates are the vertices of a regular icosahedron.Its dual regular dodecahedron, whose edges intersect those of the icosahedron at right angles, has as vertices the points (,,) together with the points (, /,) and cyclic permutations of these coordinates.

  5. File:Dodecahedron vertices.svg - Wikipedia

    en.wikipedia.org/wiki/File:Dodecahedron_vertices.svg

    The blue vertices lie at (± ⁠ 1 / ϕ ⁠, 0, ±ϕ) and form a rectangle on the xz-plane. (The red, green and blue coordinate triples are circular permutations of each other.) The distance between adjacent vertices is ⁠ 2 / ϕ ⁠, and the distance from the origin to any vertex is √ 3. ϕ = ⁠ 1 + √ 5 / 2 ⁠ is the golden ratio.

  6. Rhombic dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombic_dodecahedron

    It has 8 vertices adjusted in or out in alternate sets of 4, with the limiting case a tetrahedral envelope. Variations can be parametrized by (a,b), where b and a depend on each other such that the tetrahedron defined by the four vertices of a face has volume zero, i.e. is a planar face. (1,1) is the rhombic solution.

  7. Table of polyhedron dihedral angles - Wikipedia

    en.wikipedia.org/wiki/Table_of_polyhedron...

    Rhombic dodecahedron (Dual of cuboctahedron) — V(3.4.3.4) arccos (-⁠ 1 / 2 ⁠) = ⁠ 2 π / 3 ⁠ 120° Rhombic triacontahedron (Dual of icosidodecahedron) — V(3.5.3.5) arccos (-⁠ √ 5 +1 / 4 ⁠) = ⁠ 4 π / 5 ⁠ 144° Medial rhombic triacontahedron (Dual of dodecadodecahedron) — V(5. ⁠ 5 / 2 ⁠.5. ⁠ 5 / 2 ⁠) arccos ...

  8. Great dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Great_dodecahedron

    The compound of small stellated dodecahedron and great dodecahedron is a polyhedron compound where the great dodecahedron is internal to its dual, the small stellated dodecahedron. This can be seen as one of the two three-dimensional equivalents of the compound of two pentagrams ({10/4} " decagram "); this series continues into the fourth ...

  9. Small stellated dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Small_stellated_dodecahedron

    The truncated small stellated dodecahedron can be considered a degenerate uniform polyhedron since edges and vertices coincide, but it is included for completeness. Visually, it looks like a regular dodecahedron on the surface, but it has 24 faces in overlapping pairs. The spikes are truncated until they reach the plane of the pentagram beneath ...