Search results
Results from the WOW.Com Content Network
The spin magnetic moment of a charged, spin-1/2 particle that does not possess any internal structure (a Dirac particle) is given by [1] =, where μ is the spin magnetic moment of the particle, g is the g-factor of the particle, e is the elementary charge, m is the mass of the particle, and S is the spin angular momentum of the particle (with magnitude ħ/2 for Dirac particles).
The g-force acting on an object under acceleration can be much greater than 1 g, for example, the dragster pictured at top right can exert a horizontal g-force of 5.3 when accelerating. The g-force acting on an object under acceleration may be downwards, for example when cresting a sharp hill on a roller coaster.
As of 2016, the coefficients of the QED formula for the anomalous magnetic moment of the electron are known analytically up to [3] and have been calculated up to order : [4] [5] [6] = () The QED prediction agrees with the experimentally measured value to more than 10 significant figures, making the magnetic moment of the electron one of the ...
[1] [2] The acceleration of a body near the surface of the Earth is due to the combined effects of gravity and centrifugal acceleration from the rotation of the Earth (but the latter is small enough to be negligible for most purposes); the total (the apparent gravity) is about 0.5% greater at the poles than at the Equator. [3] [4]
Since a gyromagnetic factor equal to 2 follows from Dirac's equation, it is a frequent misconception to think that a g-factor 2 is a consequence of relativity; it is not. The factor 2 can be obtained from the linearization of both the Schrödinger equation and the relativistic Klein–Gordon equation (which leads to Dirac's).
For the mass attraction effect by itself, the gravitational acceleration at the equator is about 0.18% less than that at the poles due to being located farther from the mass center. When the rotational component is included (as above), the gravity at the equator is about 0.53% less than that at the poles, with gravity at the poles being ...
The equation for universal gravitation thus takes the form: F = G m 1 m 2 r 2 , {\displaystyle F=G{\frac {m_{1}m_{2}}{r^{2}}},} where F is the gravitational force acting between two objects, m 1 and m 2 are the masses of the objects, r is the distance between the centers of their masses , and G is the gravitational constant .
By making this assumption, g takes the following form: = (i.e., the direction of g is antiparallel to the direction of r, and the magnitude of g depends only on the magnitude, not direction, of r). Plugging this in, and using the fact that ∂ V is a spherical surface with constant r and area 4 π r 2 {\displaystyle 4\pi r^{2}} ,