Search results
Results from the WOW.Com Content Network
The analogy is useful for both using heat and mass transport to predict one another, or for understanding systems which experience simultaneous heat and mass transfer. For example, predicting heat transfer coefficients around turbine blades is challenging and is often done through measuring evaporating of a volatile compound and using the ...
Convective heat transfer, or simply, convection, is the transfer of heat from one place to another by the movement of fluids, a process that is essentially the transfer of heat via mass transfer. The bulk motion of fluid enhances heat transfer in many physical situations, such as between a solid surface and the fluid. [10]
The statement of Newton's law used in the heat transfer literature puts into mathematics the idea that the rate of heat loss of a body is proportional to the difference in temperatures between the body and its surroundings. For a temperature-independent heat transfer coefficient, the statement is:
The problem of heat transfer in the presence of liquid flowing around the body was first formulated and solved as a coupled problem by Theodore L. Perelman in 1961, [1] who also coined the term conjugate problem of heat transfer. Later T. L. Perelman, in collaboration with A.V. Luikov, [2] developed this approach further.
The macroscopic energy equation for infinitesimal volume used in heat transfer analysis is [6] = +, ˙, where q is heat flux vector, −ρc p (∂T/∂t) is temporal change of internal energy (ρ is density, c p is specific heat capacity at constant pressure, T is temperature and t is time), and ˙ is the energy conversion to and from thermal ...
For a viscous, Newtonian fluid, the governing equations for mass conservation and momentum conservation are the continuity equation and the Navier-Stokes equations: = = + where is the pressure and is the viscous stress tensor, with the components of the viscous stress tensor given by: = (+) + The energy of a unit volume of the fluid is the sum of the kinetic energy / and the internal energy ...
The basic mechanisms and mathematics of heat, mass, and momentum transport are essentially the same. Among many analogies (like Reynolds analogy, Prandtl–Taylor analogy) developed to directly relate heat transfer coefficients, mass transfer coefficients and friction factors, Chilton and Colburn J-factor analogy proved to be the most accurate.
˙, ′ is the entropy generation contributed by heat transfer S ˙ g e n , Δ p ′ {\displaystyle {\dot {S}}'_{\mathrm {gen} ,\,\Delta p}} is the entropy generation contributed by fluid friction. Schiubba has also achieved the relation between Bejan number Be and Brinkman number Br