Search results
Results from the WOW.Com Content Network
In mathematics, especially in linear algebra and matrix theory, the duplication matrix and the elimination matrix are linear transformations used for transforming half-vectorizations of matrices into vectorizations or (respectively) vice versa.
For example, for the 2×2 matrix = [], the half-vectorization is = []. There exist unique matrices transforming the half-vectorization of a matrix to its vectorization and vice versa called, respectively, the duplication matrix and the elimination matrix .
Animation of Gaussian elimination. Red row eliminates the following rows, green rows change their order. In mathematics, Gaussian elimination, also known as row reduction, is an algorithm for solving systems of linear equations. It consists of a sequence of row-wise operations performed on the corresponding matrix of coefficients.
During execution of the Bareiss algorithm, every integer that is computed is the determinant of a submatrix of the input matrix. This allows, using the Hadamard inequality, to bound the size of these integers. Otherwise, the Bareiss algorithm may be viewed as a variant of Gaussian elimination and needs roughly the same number of arithmetic ...
For example, we might swap rows to perform partial pivoting, or we might do it to set the pivot element , on the main diagonal to a non-zero number so that we can complete the Gaussian elimination. For our matrix (), we want to set every element below , to zero (where , is the element in the n-th column of the main diagonal).
These decompositions summarize the process of Gaussian elimination in matrix form. Matrix P represents any row interchanges carried out in the process of Gaussian elimination. If Gaussian elimination produces the row echelon form without requiring any row interchanges, then P = I, so an LU decomposition exists.
The reduced row echelon form of a matrix is unique and does not depend on the sequence of elementary row operations used to obtain it. The variant of Gaussian elimination that transforms a matrix to reduced row echelon form is sometimes called Gauss–Jordan elimination. A matrix is in column echelon form if its transpose is in
Fourier–Motzkin elimination, also known as the FME method, is a mathematical algorithm for eliminating variables from a system of linear inequalities. It can output real solutions. The algorithm is named after Joseph Fourier [ 1 ] who proposed the method in 1826 and Theodore Motzkin who re-discovered it in 1936.