Search results
Results from the WOW.Com Content Network
[1] [114] Other methods include the use of a fibre coupler to confine and mix photons, photons emitted from decay cascade of the bi-exciton in a quantum dot, [115] or the use of the Hong–Ou–Mandel effect. [116] Quantum entanglement of a particle and its antiparticle, such as an electron and a positron, can be created by partial overlap of ...
The quantum mind or quantum consciousness is a group of hypotheses proposing that local physical laws and interactions from classical mechanics or connections between neurons alone cannot explain consciousness, [1] positing instead that quantum-mechanical phenomena, such as entanglement and superposition that cause nonlocalized quantum effects, interacting in smaller features of the brain than ...
Quantum radar is a speculative remote-sensing technology based on quantum-mechanical effects, such as the uncertainty principle or quantum entanglement.Broadly speaking, a quantum radar can be seen as a device working in the microwave range, which exploits quantum features, from the point of view of the radiation source and/or the output detection, and is able to outperform a classical ...
Additionally, the idea of quantum entanglement playing a role in consciousness isn’t a mainstream one—Hameroff, one the leading minds behind the idea that quantum phenomena could drive aspects ...
Quantum decoherence is a mechanism through which quantum systems lose coherence, and thus become incapable of displaying many typically quantum effects: quantum superpositions become simply probabilistic mixtures, and quantum entanglement becomes simply classical correlations.
Quantum entanglement can be defined only within the formalism of quantum mechanics, i.e., it is a model-dependent property. In contrast, nonlocality refers to the impossibility of a description of observed statistics in terms of a local hidden variable model, so it is independent of the physical model used to describe the experiment.
In quantum physics, a group of particles can interact or be created together in such a way that the quantum state of each particle of the group cannot be described independently of the state of the others, including when the particles are separated by a large distance. This is known as quantum entanglement.
Macroscopic quantum phenomena are processes showing quantum behavior at the macroscopic scale, rather than at the atomic scale where quantum effects are prevalent. The best-known examples of macroscopic quantum phenomena are superfluidity and superconductivity; other examples include the quantum Hall effect, Josephson effect and topological order.